skip to main content


Search for: All records

Creators/Authors contains: "Madsen, P. T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Pronounced dive responses through peripheral vasoconstriction and bradycardia enables prolonged apnoea in marine mammals. For most vertebrates, the dive response is initiated upon face immersion, but little is known about the physical drivers of diving and surfacing heart rate in cetaceans whose faces are always mostly submerged. Using two trained harbour porpoises instrumented with an ECG-measuring DTAG-3, we investigate the initiation and progression of bradycardia and tachycardia during apnoea and eupnoea for varying levels of immersion. We show that paranasal wetting drives bradycardia initiation and progression, whereas apnoea leads to dive-level bradycardia eventually, but not instantly. At the end of dives, heart rate accelerates independently of lung expansion, perhaps in anticipation of surfacing; however, full tachycardia is only engaged upon inhalation. We conclude that breathing drives surface tachycardia, whereas blowhole wetting is an important driver of bradycardia; although, anticipatory/volitional modulation can overrule such responses to sensory inputs. 
    more » « less
  2. To study sensorimotor behaviour in wild animals, it is necessary to synchronously record the sensory inputs available to the animal, and its movements. To do this, we have developed a biologging device that can record the primary sensory information and the associated movements during foraging and navigating in echolocating bats. This 2.6‐g tag records the sonar calls and echoes from an ultrasonic microphone, while simultaneously sampling fine‐scale movement in three dimensions from wideband accelerometers and magnetometers. In this study, we tested the tag on an European noctula Nyctalus noctula during target approaches and on four big brown bats Eptesicus fuscus during prey interception in a flight room. We show that the tag records both the outgoing calls and echoes returning from objects at biologically relevant distances. Inertial sensor data enables the detection of behavioural events such as flying, turning, and resting. In addition, individual wing‐beats can be tracked and synchronized to the bat's sound emissions to study the coordination of different motor events. By recording the primary acoustic flow of bats concomitant with associated behaviours on a very fine time‐scale, this type of biologging method will foster a deeper understanding of how sensory inputs guide feeding behaviours in the wild. 
    more » « less
  3. The largest animals are marine filter feeders, but the underlying mechanism of their large size remains unexplained. We measured feeding performance and prey quality to demonstrate how whale gigantism is driven by the interplay of prey abundance and harvesting mechanisms that increase prey capture rates and energy intake. The foraging efficiency of toothed whales that feed on single prey is constrained by the abundance of large prey, whereas filter-feeding baleen whales seasonally exploit vast swarms of small prey at high efficiencies. Given temporally and spatially aggregated prey, filter feeding provides an evolutionary pathway to extremes in body size that are not available to lineages that must feed on one prey at a time. Maximum size in filter feeders is likely constrained by prey availability across space and time. 
    more » « less