skip to main content


Search for: All records

Creators/Authors contains: "Mai, Thuc T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Magnetic excitations in van der Waals (vdW) materials, especially in the two-dimensional (2D) limit, are an exciting research topic from both the fundamental and applied perspectives. Using temperature-dependent, magneto-Raman spectroscopy, we identify the hybridization of two-magnon excitations with two phonons in manganese phosphorus triselenide (MnPSe 3 ), a magnetic vdW material that hosts in-plane antiferromagnetism. Results from first-principles calculations of the phonon and magnon spectra further support our identification. The Raman spectra’s rich temperature dependence through the magnetic transition displays an avoided crossing behavior in the phonons’ frequency and a concurrent decrease in their lifetimes. We construct a model based on the interaction between a discrete level and a continuum that reproduces these observations. Our results imply a strong hybridization between each phonon and a two-magnon continuum. This work demonstrates that the magnon-phonon interactions can be observed directly in Raman scattering and provides deep insight into these interactions in 2D magnetic materials. 
    more » « less
  2. We report the polarization-dependent Raman spectra of exfoliated MoI3, a van der Waals material with a “true one-dimensional” crystal structure that can be exfoliated to individual atomic chains. The temperature evolution of several Raman features reveals an anomalous behavior suggesting a phase transition of magnetic origin. Theoretical considerations indicate that MoI3 is an easy-plane antiferromagnet with alternating spins along the dimerized chains and with inter-chain helical spin ordering. The calculated frequencies of phonons and magnons are consistent with the interpretation of the experimental Raman data. The obtained results shed light on the specifics of the phononic and magnonic states in MoI3 and provide a strong motivation for further study of this unique material with potential for future spintronic applications.

     
    more » « less