skip to main content


Search for: All records

Creators/Authors contains: "Maignan, Fabienne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. The flow of carbon through terrestrial ecosystems and the response toclimate are critical but highly uncertain processes in the global carboncycle. However, with a rapidly expanding array of in situ and satellitedata, there is an opportunity to improve our mechanistic understanding ofthe carbon (C) cycle's response to land use and climate change. Uncertaintyin temperature limitation on productivity poses a significant challenge topredicting the response of ecosystem carbon fluxes to a changing climate.Here we diagnose and quantitatively resolve environmental limitations onthe growing-season onset of gross primary production (GPP) using nearly 2 decades of meteorological and C flux data (2000–2018) at a subalpineevergreen forest in Colorado, USA. We implement the CARbonDAta-MOdel fraMework (CARDAMOM) model–datafusion network to resolve the temperature sensitivity of spring GPP. Tocapture a GPP temperature limitation – a critical component of the integratedsensitivity of GPP to temperature – we introduced a cold-temperature scalingfunction in CARDAMOM to regulate photosynthetic productivity. We found thatGPP was gradually inhibited at temperatures below 6.0 ∘C (±2.6 ∘C) and completely inhibited below −7.1 ∘C(±1.1 ∘C). The addition of this scaling factor improvedthe model's ability to replicate spring GPP at interannual and decadal timescales (r=0.88), relative to the nominal CARDAMOM configuration (r=0.47), and improved spring GPP model predictability outside of the dataassimilation training period (r=0.88). While cold-temperaturelimitation has an important influence on spring GPP, it does not have asignificant impact on integrated growing-season GPP, revealing that otherenvironmental controls, such as precipitation, play a more important role inannual productivity. This study highlights growing-season onset temperatureas a key limiting factor for spring growth in winter-dormant evergreenforests, which is critical in understanding future responses to climatechange. 
    more » « less
  2. Abstract. Land surface modellers need measurable proxies toconstrain the quantity of carbon dioxide (CO2) assimilated bycontinental plants through photosynthesis, known as gross primary production(GPP). Carbonyl sulfide (COS), which is taken up by leaves through theirstomates and then hydrolysed by photosynthetic enzymes, is a candidate GPPproxy. A former study with the ORCHIDEE land surface model used a fixedratio of COS uptake to CO2 uptake normalised to respective ambientconcentrations for each vegetation type (leaf relative uptake, LRU) tocompute vegetation COS fluxes from GPP. The LRU approach is known to havelimited accuracy since the LRU ratio changes with variables such asphotosynthetically active radiation (PAR): while CO2 uptake slows underlow light, COS uptake is not light limited. However, the LRU approach hasbeen popular for COS–GPP proxy studies because of its ease of applicationand apparent low contribution to uncertainty for regional-scaleapplications. In this study we refined the COS–GPP relationship andimplemented in ORCHIDEE a mechanistic model that describes COS uptake bycontinental vegetation. We compared the simulated COS fluxes againstmeasured hourly COS fluxes at two sites and studied the model behaviour andlinks with environmental drivers. We performed simulations at a global scale,and we estimated the global COS uptake by vegetation to be −756 Gg S yr−1,in the middle range of former studies (−490 to −1335 Gg S yr−1). Basedon monthly mean fluxes simulated by the mechanistic approach in ORCHIDEE, wederived new LRU values for the different vegetation types, ranging between0.92 and 1.72, close to recently published averages for observed values of1.21 for C4 and 1.68 for C3 plants. We transported the COS using the monthlyvegetation COS fluxes derived from both the mechanistic and the LRUapproaches, and we evaluated the simulated COS concentrations at NOAA sites.Although the mechanistic approach was more appropriate when comparing tohigh-temporal-resolution COS flux measurements, both approaches gave similarresults when transporting with monthly COS fluxes and evaluating COSconcentrations at stations. In our study, uncertainties between these twoapproaches are of secondary importance compared to the uncertainties in theCOS global budget, which are currently a limiting factor to the potential ofCOS concentrations to constrain GPP simulated by land surface models on theglobal scale. 
    more » « less