skip to main content


Search for: All records

Creators/Authors contains: "Maladeniya, Charini P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Lignocellulosic biomass remains underutilized despite its annual production in gigaton quantities. Sulfur is another vastly underutilized waste product of fossil fuel refining. New mechanistic insight into the reactions of sulfur unveiled since 2020 suggest a rich and hitherto unexplored chemistry between biomass‐derived olefins and elemental sulfur. In this study, four biomass‐derived olefins (eugenol (1), 4‐allyl‐2,6‐dimethoxyphenol (2),o‐eugenol (3), and 2‐allyl‐6‐methylphenol(4)) were reacted with elemental sulfur to elucidate the S−C bond‐forming and other reactivity of these compounds. Each of the compounds was reacted with elemental sulfur in three sulfur : organic reactant ratios (2 : 1, 4 : 1 and 9 : 1) and at two temperatures (180 °C or 230 °C). Product mixtures were characterized using1H NMR spectrometry and GC‐MS analysis. Products resulting from a range of mechanisms were unveiled, including inverse vulcanization, S−Callylic/benzylicbond formation, S−Carylbond formation, intramolecular cyclization, C−C σ‐bond scission, and C−O σ‐bond scission. It is anticipated that the insights from this study will support further synergy between the critical sustainability goals of biomass and sulfur utilization.

     
    more » « less
  2. Productive utilization of lignocellulosic biomass is critical to the continued advancement of human civilization. Whereas the cellulose component can be efficiently upconverted to automotive fuel-grade ethanol, the lack of upconversion methods for the lignin component constitutes one of the grand challenges facing science. Lignin is an attractive feedstock for structural applications, in which its highly-crosslinked architecture can endow composite structures with high strengths. Prior work suggests that high-strength composites can be prepared by the reaction of olefin-modified lignin with sulfur. Those studies were limited to ≤5 wt% lignin, due to phase-separation of hydrophilic lignin from hydrophobic sulfur matrices. Herein we report a protocol to increase lignin hydrophobicity and thus its incorporation into sulfur-rich materials. This improvement is affected by esterifying lignin with oleic acid prior to its reaction with sulfur. This approach allowed preparation of esterified lignin–sulfur (ELS) composites comprising up to 20 wt% lignin. Two reaction temperatures were employed such that the reaction of ELS with sulfur at 180 °C would only produce S–C bonds at olefinic sites, whereas the reaction at 230 °C would produce C–S bonds at both olefin and aryl sites. Mechanistic analyses and microstructural characterization elucidated two ELS composites having compressive strength values (>20 MPa), exceeding the values observed with ordinary Portland cements. Consequently, this new method represents a way to improve lignin utilization to produce durable composites that represent sustainable alternatives to Portland cements. 
    more » « less
  3. Sulfur cements have drawn significant attention as binders because sulfur is a byproduct of fossil fuel refining. Sulfur cements that can be formed by the vulcanization of elemental sulfur and plant-derived olefins such as terpenoids are particularly promising from a sustainability standpoint. A range of terpenoid–sulfur cements have shown compressional and flexural properties exceeding those of some commercial structural mineral cements. Pozzolans such as fly ash (FA), silica fume (SF), and ground granulated blast furnace slag (GGBFS) and abundant clay resources such as metakaolin (MK) are attractive fines for addition to binders. Herein, we report 10 composites prepared by a combination of sulfur, terpenoids (geraniol or citronellol), and these pozzolans. This study reveals the extent to which the addition of the pozzolan fines to the sulfur–terpenoid cements influences their mechanical properties and chemical resistance. The sulfur–terpenoid composites CitS and GerS were prepared by the reaction of 90 wt% sulfur and 10 wt% citronellol or geraniol oil, respectively. The density of the composites fell within the range of 1800–1900 kg/m3 and after 24 h submersion in water at room temperature, none of the materials absorbed more than 0.7 wt% water. The compressional strength of the as-prepared materials ranged from 9.1–23.2 MPa, and the percentage of compressional strength retained after acid challenge (submersion in 0.1 M H2SO4 for 24 h) ranged from 80–100%. Incorporating pozzolan fines into the already strong CitS (18.8 MPa) had negligible effects on its compressional strength within the statistical error of the measurement. CitS-SF and CitS-MK had slightly higher compressive strengths of 20.4 MPa and 23.2 MPa, respectively. CitS-GGBFS and CitS-FA resulted in slightly lower compressive strengths of 17.0 MPa and 15.8 MPa, respectively. In contrast, the compressional strength of initially softer GerS (11.7 MPa) benefited greatly after incorporating hard mineral fines. All GerS derivatives had higher compressive strengths than GerS, with GerS-MK having the highest compressive strength of 19.8 MPa. The compressional strengths of several of the composites compare favorably to those required by traditional mineral cements for residential building foundations (17 MPa), whereas such mineral products disintegrate upon similar acid challenge. 
    more » « less
  4. Abstract

    Despite improvements in chemical recycling, most post‐consumer plastics are still deposited in landfills where they pose a significant threat to ecological health. Herein we report a two‐stage method for chemically recycling poly(ethylene terephthalate) (PET) using terpenoids and waste sulfur to yield composites. In this method, post‐consumer PET (from beverage bottles) undergoes transesterification with a terpenoid alcohol (citronellol or geraniol) to yield low‐molecular PET oligomers. The terpene‐derived alkenes in these PET oligomer derivatives then served as reaction sites for inverse vulcanization with 90 wt% elemental sulfur to form compositeCPS(using citronellol) orGPS(using geraniol). Composition, mechanical, thermal, and morphological properties were characterized by NMR spectroscopy, MALDI, FT‐IR spectroscopy, compressive and flexural strength analysis, TGA, DSC, elemental analysis, and SEM/EDX. The compositesCPS(compressive strength = 5.20 MPa, flexural strength = 3.10 MPa) andGPS(compressive strength = 5.8 MPa, flexural strength = 2.77 MPa) showed mechanical strengths comparable to those of commercial bricks (classification C62 for general building). The approach delineated herein thus represents a method to chemically recycle waste plastic with industrial waste sulfur and plant‐derived terpenoids to yield composites having favorable properties comparable to existing building materials.

     
    more » « less
  5. Abstract

    Environmental contamination by plastic waste is a growing threat to the environment and human health. Unfortunately, most post‐consumer plastics are still disposed of in landfills, even plastics that could be easily recycled via simple chemical processes. This disconnect between technology and implementation is partly due to the economic barrier posed by multi‐step processes that convert plastic waste into commodity goods. There is an urgent need for green methods to convert plastic waste directly into marketable commodities via simple processes. Herein we report a simple, single‐stage process to chemically recycle poly(ethylene terephthalate) (PET) to yield composites having thermal and mechanical properties that are competitive with commercial structural materials like Portland cement. In this protocol, a mixture of PET and geraniol are heated with elemental sulfur. In this process, transesterification between geraniol and PET with concomitant thiocracking of the PET backbone leads to the formation of a highly‐crosslinked sulfur–PET–geraniol (SPG) network composite. The composite exhibited compressive strength (23.1 MPa) greater than that required for Portland cement to be used in building foundations. This new, single‐stage chemical recycling strategy thus employs a bio‐olefin and waste sulfur to convert PET waste into a durable composite that could serve as a sustainable alternative to traditional cements.

     
    more » « less
  6. null (Ed.)
    A review with 132 references. Societal and regulatory pressures are pushing industry towards more sustainable energy sources, such as solar and wind power, while the growing popularity of portable cordless electronic devices continues. These trends necessitate the ability to store large amounts of power efficiently in rechargeable batteries that should also be affordable and long-lasting. Lithium-sulfur (Li-S) batteries have recently gained renewed interest for their potential low cost and high energy density, potentially over 2600 Wh kg−1. The current review will detail the most recent advances in early 2020. The focus will be on reports published since the last review on Li-S batteries. This review is meant to be helpful for beginners as well as useful for those doing research in the field, and will delineate some of the cutting-edge adaptations of many avenues that are being pursued to improve the performance and safety of Li-S batteries. 
    more » « less
  7. Abstract

    Low cost and high durability have made Portland cement the most widely‐used building material, but benefits are offset by environmental harm of cement production contributing 8–10% of total anthropogenic CO2gas emissions. High sulfur‐content materials (HSMs) are an alternative that can perform the binding roles as cements with a smaller carbon footprint, and possibly superior chemical, physical, and mechanical properties. Inverse vulcanization of 90 wt% sulfur with 10 wt% canola oil or sunflower oil to yield CanS or SunS, respectively. Notably, these HSMs prepared at temperatures ≤180 °C compared to >1200 °C hours for Portland cement CanS was combined with 5 wt% fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBFS), or metakaolin (MK) to give composites CanS‐FA, CanS‐SF, CanS‐GGBFS, and CanS‐MK, respectively. The analogous protocol with SunS likewise yielded SunS‐FA, SunS‐SF, SunS‐GGBFS, and SunS‐MK. Each of these HSMs exhibit high compressive mechanical strength, low water uptake values, and exceptional resistance to acid‐induced corrosion. All of the composites also exhibit superior compressive strength retention after exposure to acidic solutions, conditions under which Portland cement undergoes dissolution. The polymer cement‐pozzolan composites reported herein may thus serve as greener alternatives to traditional Portland cement in some applications.

     
    more » « less
  8. null (Ed.)
    Renewably-sourced, recyclable materials that can replace or extend the service life of existing technologies are essential to accomplish humanity's quest for sustainable living. In this contribution, remeltable composites were prepared in a highly atom-economical reaction between plant-derived terpenoid alcohols (10 wt% citronellol, geraniol, or farnesol) and elemental sulfur (90 wt%). Investigation into the microstructures led to elucidation of a mechanism for terpenoid polyene cyclization initiated by sulfur-centered radicals. The formation of these cyclic structures contributes significantly to understanding the mechanical properties of the materials and the extent to which linear versus crosslinked network materials are formed. The terpenoid–sulfur composites can be thermally processed at low temperatures of 120 °C without loss of mechanical properties, and the farnesol–sulfur composite so processed exhibits compressive strength 70% higher than required of concrete for residential building. The terpenoid–sulfur composites also resist degradation by oxidizing acid under conditions that disintegrate many commercial composites and cements. In addition to being stronger and more chemically resistant than some commercial products, the terpenoid–sulfur composites can be used to improve the acid resistance of mineral-based Portland cement as well. These terpenoid–sulfur composites thus hold promise as elements of sustainable construction on their own or as additives to extend the operational life of existing technologies, while the cyclization behaviour could be an important contributor in other polymerizations of terpenoids. 
    more » « less
  9. Abstract

    Here are reported composites made by crosslinking unsaturated units in canola, sunflower, or linseed oil with sulfur to yieldCanS,SunS, andLinS, respectively. These plant oils were selected because the average number of crosslinkable unsaturated units per triglyceride vary from 1.3 for canola to 1.5 for sunflower and 1.8 for linseed oil. The remeltable composites show compressive strengths that increase with increasing unsaturation number fromCanS(9.3 MPa) toSunS(17.9 MPa) toLinS(22.9 MPa). These values forSunSandLinSare competitive when compared with the value of 17 MPa required for residential building using traditional Portland cement. The plant oil composites are recyclable over many cycles and can retain up to 100% of strength after 24 hr in oxidizing acid under conditions where Portland cement is dissolved in under 30 min. Infusion of the composites into premade cement blocks affords them with significantly improved acid resistance as well. This work thus provides a simple, nearly 100% atom economical route to convert plant oils and waste sulfur to composites having enhanced performance over commercial structural materials.

     
    more » « less