skip to main content


Search for: All records

Creators/Authors contains: "Maltese, Adam V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this manuscript, we describe a coding club we created and implemented during the COVID-19 pandemic. We were purposeful in creating the club to: (a) focus on design and problem solving as the basis for learning computer coding and (b) include elements to improve the engagement of girls. We ran multiple iterations of a Girls Design with Code Club that involved over 100 girls from 22 countries. We reviewed various sources of data to evaluate how our design and implementation of the coding clubs impacted the girls who participated. In an effort to share our learnings with other researchers and program providers, we share evidence of choices that we believe had positive impacts and others that we can improve in future iterations. 
    more » « less
    Free, publicly-accessible full text available October 23, 2024
  2. Free, publicly-accessible full text available July 3, 2024
  3. Abstract Background

    In this paper, we add to the scant literature base on learning from failures with a particular focus on understanding educators' shifting mindset in making‐centred learning environments.

    Aims

    The aim of Study 1 was to explore educators' beliefs about failure for learning and instructional practices within their local making‐centred learning environments. The aim of Study 2 was to examine how participation in a video‐based professional development cycle regarding failure moments in making‐centred learning environments might have shifted museum educators' failure pedagogical mindsets.

    Sample

    In Study 1, the sample included 15 educators at either a middle school or museum. In Study 2, the sample included 39 educators across six museums.

    Methods

    In Study 1, educators engaged in a semi‐structured interview that lasted between 45 and 75 min. In Study 2, the six museums video recorded professional development sessions.

    Results

    Results from Study 1 highlighted educators' failure pedagogical mindsets as either underdeveloped or rigid and absent of relational thinking between self‐ and youth‐failures. One key result from Study 2 was a shift from an abstract sense of failure as youth‐focused to a practical sense of failure as educator‐focused and/or relational (i.e., youth educator‐focused failure moments).

    Conclusions

    Based on the results from Study 1 and Study 2, our research suggests that exploring an educator's relationship with failure is important and witnessing and reflecting upon their own failure pedagogical mindset in action may facilitate a shift towards a more complex and interconnected space for growth and development of both educators and youth.

     
    more » « less
  4. Abstract Background Capturing measures of students’ attitudes toward science has long been a focus within the field of science education. The resulting interest has led to the development of many instruments over the years. There is considerable disagreement about how attitudes should be measured, and especially whether students’ attitudes toward science can or should be measured unidimensionally, or whether separate attitude dimensions or subscales should be considered. When it is agreed upon that the attitudes toward science construct should be measured along separate subscales, there is no consensus about which subscales should be used. Methods A streamlined version of the modified Attitudes Towards Science Inventory (mATSI), a widely used science measurement instrument, was validated for a more diverse sample as compared to the original study (Weinburgh and Steele in Journal of Women and Minorities in Science and Engineering 6:87–94, 2000). The analytical approach used factor analyses and longitudinal measurement invariance. The study used a sample of 2016 self-reported responses from 6 and 7th grade students. The factor analysis elucidated the factor structure of students’ attitudes toward science, and some modifications were made in accordance with the results. Measurement invariance analysis was used to confirm the stability of the measure. Results Our results support that the subscales, anxiety toward science and value and enjoyment of science , are two factors and stable over time. Conclusions Our results suggest that our proposed modified factor structure for students’ attitudes toward science is reliable, valid, and appropriate for use in longitudinal studies. This study and its resulting streamlined mATSI survey could be of value to those interested in studying student engagement and measuring middle-school students' attitudes toward science. 
    more » « less
  5. Our NSF-funded project, CoBuild19, sought to address the large-scale shift to at-home learning based on nationwide school closures that occurred during COVID-19 through creating making/STEM activities for families with children in grades K-6. Representing multiple organizations, our CoBuild19 project team developed approximately 60 STEM activities that make use of items readily available in most households. From March through June 2020, we produced and shared videos and activity guides, averaging 3+ new activities per week. Initially, the activities consisted of whatever team members could pull together, but we soon created weekly themes with associated activities, including Design and Prototype Week, Textiles Week, Social and Emotional Learning Week, and one week which highlighted kids sharing cooking and baking recipes for other kids. All activities were delivered fully online. To do so, our team started a Facebook group on March 13, 2020. Membership grew to 3490 followers by April 1st, to 4245 by May 1st, and leveled off at approximately 5100 members since June 2020. To date, 22 of our videos have over 1000 views, with the highest garnering 23K views. However, we had very little participation in the form of submitted videos, images, or text from families sharing what they were creating, limiting our possible analyses. While we had some initial participation by members, as the FB group grew, substantive evidence of participation faded. To better understand this drop, we polled FB group members about their use of the activities. Responses (n = 101) were dominated by the option, "We are glad to know the ideas are available, but we are not using much" (49%), followed by, "We occasionally do activities" (35%). At this point, we had no data about home participation, so we decided to experiment with different approaches. Our next efforts focused on conducting virtual maker/STEM camps. Leveraging the content produced in the first months of CoBuild19, we hosted two rounds of Camp CoBuild by the end of July, serving close to 100 campers. The camps generated richer data in the form of recorded Zoom camp sessions where campers made synchronously with educators and youth-created Flipgrid videos where campers shared their process and products for each activity. We also collected post-camp surveys and some caregiver interviews. Preliminary analyses have focused on the range of participant engagement and which malleable factors may be associated with deeper engagement. Initial feedback from caregivers indicated that their children gained confidence to experiment with simple materials through engaging in these activities. This project sought to fill what we perceived as a developing need in the community at a large scale (e.g., across the US). Although we have not achieved the level of success we expected, the project achieved quick growth that took us in a different direction than we originally intended. Overall, we created content that educators and families can use to engage kids with minimal materials. Additionally, we have a few models of extended engagement (e.g., Camp CoBuild) that we can develop further into future offerings. 
    more » « less
  6. Early in the pandemic we gathered a group of educators to create and share at-home educational opportunities for families to design and make STEAM projects while at home. As this effort, CoBuild19, continued, we decided to extend our offerings to include basic computer programming. To accomplish this, we created an offering called the Design with Code Club (DwCC). We structured DwCC to be different from other common coding offerings in that we wanted the main focus to be on kids designing solutions to problems that might include the use of technology and coding. We were purposeful in this decision for two main reasons. First, we wanted to make our coding club more interesting to girls, where previous research demonstrates their interest in designing solutions. Second, we wanted this effort to be different from most programming instruction, where coding activities use programming as the core of instruction and application in authentic and student-selected contexts plays a secondary role. DwCC was set up so that each of the first four weeks had a different larger challenge that was COVID-19 related and sessions unfolded with alternating smaller challenges, discussion around design and coding instruction that would develop their skills and knowledge of micro:bit capabilities. We culminated DwCC with an open-ended project where the kids were given the challenge of coming up with their own problem for which they might incorporate micro:bit as part of the solution. Because we were doing all of this online, we used the micro:bit interface through Microsoft MakeCode, which includes a functional simulator. From our experiences we realized that simulations are not as enticing as physical computing with a tangible device, so we set up an incentive where youth who participated in at least three sessions of the club would receive a physical micro:bit. We advertised DwCC through Facebook and twitter and had nearly 200 families register their kids to participate. In the end, a total of 52 micro:bits were sent to youth participants. Based on this success, we sought to expand the effort and increase accessibility for groups that are traditionally underrepresented in STEM. In spring 2021, we offered a Girls DwCC. This was a redesigned version of the club where the focus was even more on problem-solving through design. The club was run by all women, including one from the US, an Industrial Engineer from Mexico and a computer programmer from Albania. More than 50 girls from 17 countries participated in the club! We are working on another version of GDwCC that will be offered in Spanish and focus on Latina girls in the US and Mexico. In the most recent iteration of DwCC we are working with an educator at a school for deaf students to create a version of the club that works for their students. We are doing some modification of activities and recreating videos that involve sign language interpretation. In this presentation we will report on the variants of DwCC, results from participant feedback surveys and plans for future versions. 
    more » « less
  7. Caregivers are critical to children’s academic and social growth and development. As an adult who provides direct care and support, caregivers play a large role in what concepts and experiences children are exposed to, engage with, and pursue. A growing body of research has highlighted how caregiver influence manifests within out-of-school contexts, yet less is known about the impact of out-of-school learning and engagement from the perspectives of caregivers themselves. This study explored experiences and shifts in caregiver perceptions of shifts within themselves and their children through participation in an out-of-school home-based engineering program. Data were derived from post-program interviews with over 20 participating caregivers from three years of the program. Results illuminate various experiences and shifts in caregiver self-perception and understanding of their children’s learning and development. Specifically, these shifts included enhanced self-reflection and introspection, positive shifts in caregiver interactions with children, and observed increases in self-efficacy and complex thinking within children. Findings contribute to a growing body of knowledge of family engagement and the distinct perspective that caregivers can provide on children’s learning. Further, shifts in caregiver self-concept and self-efficacy in engaging in engineering content make a unique contribution and provide insights into ways that caregiver engagement in out-of-school learning might be adapted to incorporate more accessible learning opportunities, especially those that occur in the home. 
    more » « less
  8. STEM education programs are often formulated with a "hands-on activities" focus across a wide array of topics from robotics to rockets to ecology. Traditionally, the impact of these programs is based on surveys of youth on program-specific experiences or the youths’ interest and impressions of science in general. In this manuscript, we offer a new approach to analyzing science programming design and youth participant impact. The conceptual framework discussed here concentrates on the organization and analysis of common learning activities and instructional strategies. We establish instrument validity and reliability through an analysis of validity threats and pilot study results. We conclude by using this instrument in an example analysis of a STEM education program. 
    more » « less
  9. Abstract Background

    Despite the prevalence and potential of K–12 engineering outreach programs, the moment‐to‐moment dynamics of outreach educators' facilitation of engineering learning experiences are understudied. There is a need to identify outreach educators' teaching moves and to explore the implications of these moves.

    Purpose/Hypothesis

    We offer a preliminary framework for characterizing engineering outreach educators' teaching moves in relation to principles of ambitious instruction. This study describes outreach educators' teaching moves and identifies learning opportunities afforded by these moves.

    Design/Method

    Through discourse analysis of video recordings of a university‐led engineering outreach program, we identified teaching moves of novice engineering outreach educators in interaction with elementary student design teams. We considered 18 outreach educators' teaching moves through a lens of ambitious instruction.

    Results

    In small group interactions, outreach educators used ambitious, conservative, and inclusive teaching moves. These novice educators utilized talk moves that centered students' ideas and agency. Ambitious moves included two novel teaching moves: design check‐ins and revoicing tangible manifestations of students' ideas. Ambitious moves offered students opportunities to engage in engineering design. Conservative moves provided opportunities for students to make technical and affective progress, and to experience engineering norms.

    Conclusions

    Our work is formative in describing engineering outreach educators' teaching moves and points to outreach educators' capability in using ambitious moves. Ambitious engineering instruction may be a useful framework for designing engineering outreach to support students' participation and progress in engineering design. Additionally, conservative teaching moves, typically considered constraining, may support productive student affect and engagement in engineering design.

     
    more » « less
  10. null (Ed.)
    Caregivers are one of the most significant influences in their children’s engineering engagement at a young age; however, the roles caregivers can play in supporting their children is less understood. Employing an intrinsic case study on a five-month engineering program conducted in an out-of-school context, we illustrate the multiple and different roles that three caregivers enacted, and the contextual factors of the program that influenced and shaped their role enactment. We observed 12 dynamic, complex, and evolving roles that caregivers endorsed to support their child throughout the engineering design process. These roles were situated within preexisting rules and expectations as caregivers while also developing an understanding of the rules and expectations of an engineer through their social interactions with volunteer engineers and makers. This work contributes to our understanding of how to create environments to enable caregivers to best support their children’s STEM learning process. 
    more » « less