skip to main content


Search for: All records

Creators/Authors contains: "Mangino, Antonio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    The number of Internet-of-Things (IoT) devices actively communicating across the Internet is continually increasing, as these devices are deployed across a variety of sectors, constantly transferring private data across the Internet. Due to the extensive deployment of such devices, the continuous discovery and persistence of IoT-centric vulnerabilities in protocols, applications, hardware, and the improper management of such IoT devices has resulted in the rampant, uncontrolled spread of malware threatening consumer IoT devices. To this end, this work adopts a novel, macroscopic methodology for fingerprinting Internet-scale compromised IoT devices, revealing crucial cyber threat intelligence on the insecurity of consumer IoT devices. By developing data-driven techniques rooted in machine learning methods and analyzing 3.6 TB of network traffic data, we discover 855,916 compromised IP addresses, with 310,164 fingerprinted as IoT. Further analysis reveals China and Brazil to be hosting the most significant population of compromised IoT devices (100,000 and 55,000, respectively). Additionally, we provide a longitudinal analysis on data from one year ago against this work, revealing the evolving trends of IoT exploitation, such as the increased number of vendors targeted by malware, rising from 50 to 131. Moreover, countries such as China (420% increased infected IoT count) and Indonesia (177% increased infected IoT count) have seen notably high increases in infection rates. Last, we compare our geographic results against Global Cybersecurity Index (GCI) ratings, verifying that countries with high GCI ratings, such as the Netherlands and Germany, had relatively low infection rates. However, upon further inspection, we find that the GCI rate does not accurately represent the consumer IoT market, with countries such as China and Russia being rated with “high” CGI scores, yet hosting a large population of infected consumer IoT devices. 
    more » « less
  2. This paper describes the deployment of a private cloud and the development of virtual laboratories and companion material to teach and train engineering students and Information Technology (IT) professionals in high-throughput networks and cybersecurity. The material and platform, deployed at the University of South Carolina, are also used by other institutions to support regular academic courses, self-pace training of professional IT staff, and workshops across the country. The private cloud is used to deploy scenarios consisting of high-speed networks (up to 50 Gbps), multi-domain environments emulating internetworks, and infrastructures under cyber-attacks using live traffic. For regular academic courses, the virtual laboratories have been adopted by institutions in different states to supplement theoretical material with hands-on activities in IT, electrical engineering, and computer science programs. Topics include Local Area Networks (LANs), congestion-control algorithms, performance tools used to emulate wide area networks (WANs) and their attributes (packet loss, reordering, corruption, latency, jitter, etc.), data transfer applications for high-speed networks, queueing delay and buffer size in routers and switches, active monitoring of multi-domain systems, high-performance cybersecurity tools such as Zeek’s intrusion detection systems, and others. The training platform has been also used by IT professionals from more than 30 states, for self-pace training. The material provides training on topics beyond general-purpose network, which are usually overlooked by practitioners and researchers. The virtual laboratories and companion material have also been used in workshops organized across the country. Workshops are co-organized with organizations that operate large backbone networks connecting research centers and national laboratories, and colleges and universities conducting teaching and research activities. 
    more » « less