skip to main content


Search for: All records

Creators/Authors contains: "Mann, I. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    In the present study we examine three substorm events, Events 1–3, focusing on the spatio‐temporal development of auroral electrojets (AEJs) before auroral breakup. In Events 1 and 2, auroral breakup was preceded by the equatorward motion of an auroral form, and the ground magnetic field changed northward and southward in the west and east of the expected equatorward flow, respectively. Provided that these magnetic disturbances were caused by local ionospheric Hall currents, this feature suggests that the equatorward flow turned both eastward and westward as it reached the equatorward part of the auroral oval. The auroral breakup took place at the eastward‐turning and westward‐turning branches in Events 1 and 2, respectively, and after the auroral breakup, the westward AEJ enhanced only on the same side of the flow demarcation meridian. The zonal flow divergence is considered as an ionospheric manifestation of the braking of an earthward flow burst in the near‐Earth plasma sheet and subsequent dawnward and duskward turning. Therefore, in Events 1 and 2, the auroral breakup presumably mapped to the dawnward and duskward flow branches, respectively. Moreover, for Event 3, we do not find any pre‐onset auroral or magnetic features that can be associated with an equatorward flow. These findings suggest that the braking of a pre‐onset earthward flow burst itself is not the direct cause of substorm onset, and therefore, the wedge current system that forms at substorm onset is distinct from the one that is considered to form as a consequence of the flow braking.

     
    more » « less
  2. Abstract

    Azimuthal structuring is usually observed within the brightening auroral substorm onset arc; such structure has been linked to the exponential growth of electromagnetic ultralow‐frequency (ULF) waves. We present a case study investigating the timing and frequency dependence of such ULF waves on the ground and in the near‐Earth magnetotail. In the magnetotail, we observe an increase in broadband wave power across the 10‐ to 100‐s period range. On the ground, the arrival times spread from an epicenter. The onset of longer period waves occurs first and propagates fastest in latitude and longitude, while shorter periods appear to be more confined to the onset arc. The travel time from the spacecraft to the ground is inferred to be approximately 1–2 min for ULF wave periods between 15 and 60 s, with transit times of 60 s or less for longer period waves. This difference might be attributed to preferential damping of the shorter period waves, as their amplitude would take longer to rise above background levels. These results have important consequences for constraining the physics of substorm onset processes in the near‐Earth magnetotail and their communication to the ground.

     
    more » « less
  3. Abstract

    The rapid changes of magnetic fields associated with large, isolated magnetic perturbations with amplitudes |ΔB| of hundreds of nanotesla and 5‐ to 10‐min periods can induce bursts of geomagnetically induced currents that can harm technological systems. This paper presents statistical summaries of the characteristics of nightside magnetic perturbation events observed in Eastern Arctic Canada from 2014 through 2017 using data from stations that are part of four magnetometer arrays: MACCS, AUTUMNX, CANMOS, and CARISMA, covering a range of magnetic latitudes from 68 to 78°. Most but not all of the magnetic perturbation events were associated with substorms: roughly two thirds occurred between 5 and 30 min after onset. The association of intense nighttime magnetic perturbation events with magnetic storms was significantly reduced at latitudes above 73°, presumably above the nominal auroral oval. A superposed epoch study of 21 strong events at Cape Dorset showed that the largest |dB/dt| values appeared within an ~275‐km radius that was associated with a region of shear between upward and downward field‐aligned currents. The statistical distributions of impulse amplitudes of both |ΔB| and |dB/dt| fit well the log‐normal distribution at all stations. The |ΔB| distributions are similar over the magnetic latitude range studied, but the kurtosis and skewness of the |dB/dt| distributions show a slight increase with latitude. Knowledge of the statistical characteristics of these events has enabled us to estimate the occurrence probability of extreme impulsive disturbances using the approximation of a log‐normal distribution.

     
    more » « less