skip to main content


Search for: All records

Creators/Authors contains: "Manning, Craig E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Fluid-mediated calcium metasomatism is often associated with strong silica mobility and the presence of chlorides in solution. To help quantify mass transfer at lower crustal and upper mantle conditions, we measured quartz solubility in H2O-CaCl2 solutions at 0.6–1.4 GPa, 600–900 °C, and salt concentrations to 50 mol%. Solubility was determined by weight loss of single-crystals using hydrothermal piston-cylinder methods. All experiments were conducted at salinity lower than salt saturation. Quartz solubility declines exponentially with added CaCl2 at all conditions investigated, with no evidence for complexing between silica and Ca. The decline in solubility is similar to that in H2O-CO2 but substantially greater than that in H2O-NaCl at the same pressure and temperature. At each temperature, quartz solubility at low salinity (XCaCl2 < 0.1) depends strongly on pressure, whereas at higher XCaCl2 it is nearly pressure independent. This behavior is consistent with a transition from an aqueous solvent to a molten salt near XCaCl2 ~0.1. The solubility data were used to develop a thermodynamic model of H2O-CaCl2 fluids. Assuming ideal molten-salt behavior and utilizing previous models for polymerization of hydrous silica, we derived values for the activity of H2O (aH2O), and for the CaCl2 dissociation factor (α), which may vary from 0 (fully associated) to 2 (fully dissociated). The model accurately reproduces our data along with those of previous work and implies that, at conditions of this study, CaCl2 is largely associated (<0.2) at H2O density <0.85 g/cm3. Dissociation rises isothermally with increasing density, reaching ~1.4 at 600 °C, 1.4 GPa. The variation in silica molality with aH2O in H2O-CaCl2 is nearly identical to that in H2O-CO2 solutions at 800 °C and 1.0 GPa, consistent with the absence of Ca-silicate complexing. The results suggest that the ionization state of the salt solution is an important determinant of aH2O, and that H2O-CaCl2 fluids exhibit nearly ideal molecular mixing over a wider range of conditions than implied by previous modeling. The new data help interpret natural examples of large-scale Ca-metasomatism in a wide range of lower crustal and upper mantle settings.

     
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. Abstract. Mount Somma–Vesuvius is a stratovolcano that represents a geological hazard to the population of the city of Naples and surrounding towns in southern Italy. Historically, volcanic eruptions at Mt. Somma–Vesuvius (SV) include high-magnitude Plinian eruptions, such as the infamous 79 CE eruption that occurred after 295 years of quiescence and killed thousands of people in Pompeii and surrounding towns and villages. The last eruption at SV was in 1944 and showed a Volcanic Explosivity Index (VEI) of 3 (0.01 km3 of volcanic material erupted). Following the 1944 eruption, SV has been dormant for the past nearly 79 years, with only minor fumarolic and seismic activity. During its long history, centuries of dormancy at SV have ended with Plinian eruptions (VEI 6) that signal the beginning of a new cycle of eruptive activity. Thus, the current dormancy stage demands a need to better understand the mechanism involved in high-magnitude eruptions in order to better predict future eruption magnitude and style. Despite centuries of research on the SV volcanic system, many questions remain, including the evolution of magmatic volatiles from deep primitive magmas to shallower more evolved magmas. Developing a better understanding of the physical and chemical processes associated with volatile evolution at SV can provide insights into magma dynamics and the mechanisms that trigger highly explosive eruptions at SV. In this study, we present new data for the pre-eruptive volatile contents of magmas associated with four Plinian and two inter-Plinian eruptions at SV based on analyses of reheated melt inclusions (MIs) hosted in olivine. We correct the volatile contents of bubble-bearing MIs by taking into account the volatile contents of bubbles in the MIs. We recognize two groups of MIs: one group hosted in high-Fo olivine (Fo85–90) and relatively rich in volatiles and the other group hosted in low-Fo olivine (Fo70–69) and relatively depleted in volatiles. The correlation between volatile contents and compositions of host olivines suggests that magma fractionation took place under volatile-saturated conditions and that more differentiated magmas reside at shallower levels relative to less evolved/quasi-primitive magmas. Using the CO2 contents of corrected MIs hosted in Fo90 olivine from SV, we estimate that 347 to 686 t d−1 of magmatic CO2 exsolved from SV magmas during the last 3 centuries (38–75 Mt in total) of volcanic activity. Although this study is limited to only few SV magmas, we suggest that further study applying similar methods could shed light on the apparent lack of correlation between the volatile contents of MIs and the style and age of eruptions. Further, such studies could provide additional constraints on the origin of CO2 and the interaction between the carbonate platform and ascending magmas below SV.

     
    more » « less
  3. null (Ed.)
    Fluids are essential to the physical and chemical processes in subduction zones. Two types of subduction-zone fluids can be distinguished. First, shallow fluids, which are relatively dilute and water rich and that have properties that vary between subduction zones depending on the local thermal regime. Second, deep fluids, which possess higher proportions of dissolved silicate, salts and non-polar gases relative to water content, and have properties that are broadly similar in most subduction systems, regardless of the local thermal structure. We review key physical and chemical properties of fluids in two key subduction-zone contexts—along the slab top and beneath the volcanic front—to illustrate the distinct properties of shallow and deep subduction-zone fluids. 
    more » « less
  4. null (Ed.)
    Aqueous fluids are critical agents in the geochemical evolution of Earth’s interior. Fluid circulation and fluid–rock reactions in the Earth take place at temperatures ranging from ambient to magmatic, at pressures from ambient to extreme, and involve fluids that range from nearly pure H2O through to complex, multicomponent solutions. Consequently, the physical and chemical properties of hydrothermal fluids vary widely as functions of geologic setting; this variation strongly impacts fluid-driven processes. This issue will focus on the nature of geologic fluids at hydrothermal conditions and how such fluids affect geologic processes in some major settings. 
    more » « less