skip to main content


Search for: All records

Creators/Authors contains: "Mansouri Tehrani, Aria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Mo 0.9 W 1.1 BC and ReWC 0.8 compositions have recently been identified to have exceptional hardness and incompressibility. In this work, these compositions are analyzed via in situ radial X-ray diffraction experiments to comparatively assess lattice strain and texture development. Traditionally, Earth scientists have employed these experiments to enhance understanding of dynamic activity within the deep Earth. However, nonhydrostatic compression experiments provide insight into materials with exceptional mechanical properties, as they help elucidate correlations between structural, elastic, and mechanical properties. Here, analysis of differential strain ( t / G ) and lattice preferred orientation in Mo 0.9 W 1.1 BC suggests that dislocation glide occurs along the (010) plane in orthorhombic Mo 0.9 W 1.1 BC. The (200) and (002) planes support the highest differential strain, while planes which bisect two or three axes, such as the (110) or (191), exhibit relatively lower differential strain. In ReWC 0.8 , which crystallizes in a cubic NaCl-type structure, planar density is correlated to orientation-dependent lattice strain as the low-density (311) plane elastically supports more differential strain than the denser (111), (200), and (220) planes. Furthermore, results indicate that ReWC 0.8 likely supports a higher differential stress t than Mo 0.9 W 1.1 BC and, based on a lack of texture development, bulk plastic yielding is not observed in ReWC 0.8 upon compression to ∼60 GPa. 
    more » « less
  3. Abstract

    Rare-earth substituted inorganic phosphors are critical for solid state lighting. New phosphors are traditionally identified through chemical intuition or trial and error synthesis, inhibiting the discovery of potential high-performance materials. Here, we merge a support vector machine regression model to predict a phosphor host crystal structure’s Debye temperature, which is a proxy for photoluminescent quantum yield, with high-throughput density functional theory calculations to evaluate the band gap. This platform allows the identification of phosphors that may have otherwise been overlooked. Among the compounds with the highest Debye temperature and largest band gap, NaBaB9O15shows outstanding potential. Following its synthesis and structural characterization, the structural rigidity is confirmed to stem from a unique corner sharing [B3O7]5–polyanionic backbone. Substituting this material with Eu2+yields UV excitation bands and a narrow violet emission at 416 nm with a full-width at half-maximum of 34.5 nm. More importantly, NaBaB9O15:Eu2+possesses a quantum yield of 95% and excellent thermal stability.

     
    more » « less