skip to main content


Search for: All records

Creators/Authors contains: "Manuel, J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Subjective socioeconomic status is robustly associated with many measures of health and well-being. The MacArthur Scale of Subjective Social Status (i.e., the MacArthur ladder) is the most widely used measure of this construct, but it remains unclear what exactly the MacArthur ladder measures.

    Purpose

    The present research sought to explore the social and economic factors that underlie responses to the MacArthur ladder and its relationship to health.

    Methods

    We investigated this issue by examining the relationship between scores on the MacArthur ladder and measures of economic circumstances and noneconomic social status, as well as health and well-being measures, in healthy adults in the USA.

    Results

    In three studies (total N = 1,310) we found evidence that economic circumstances and social status are distinct constructs that have distinct associations with scores on the MacArthur ladder. We found that both factors exhibit distinct associations with measures of health and well-being and accounted for the association between the MacArthur ladder and each measure of health and well-being.

    Conclusions

    Our findings suggest that the MacArthur ladder’s robust predictive validity may result from the fact that it measures two factors—economic circumstances and social status—that are each independently associated with health outcomes. These findings provide a novel perspective on the large body of literature that uses the MacArthur ladder and suggests health researchers should do more to disentangle the social and economic aspects of subjective socioeconomic status.

     
    more » « less
  2. Free, publicly-accessible full text available January 1, 2025
  3. Abstract Current models of island biogeography treat endemic and non‐endemic species as if they were functionally equivalent, focussing primarily on species richness. Thus, the functional composition of island biotas in relation to island biogeographical variables remains largely unknown. Using plant trait data (plant height, leaf area and flower length) for 895 native species in the Canary Islands, we related functional trait distinctiveness and climate rarity for endemic and non‐endemic species and island ages. Endemics showed a link to climatically rare conditions that is consistent with island geological change through time. However, functional trait distinctiveness did not differ between endemics and non‐endemics and remained constant with island age. Thus, there is no obvious link between trait distinctiveness and occupancy of rare climates, at least for the traits measured here, suggesting that treating endemic and non‐endemic species as functionally equivalent in island biogeography is not fundamentally wrong. 
    more » « less
  4. Abstract Aim

    The climate variability hypothesis proposes that species subjected to wide variation in climatic conditions will evolve wider niches, resulting in larger distributions. We test this hypothesis in tropical plants across a broad elevational gradient; specifically, we use a species‐level approach to evaluate whether elevational range sizes are explained by the levels of thermal variability experienced by species.

    Location

    Central Andes.

    Time Period

    Present day.

    Taxon

    Woody plants.

    Methods

    Combining data from 479 forest plots, we determined the elevational distributions of nearly 2300 species along an elevational gradient (~209–3800 m). For each species, we calculated the maximum annual variation in temperature experienced across its elevational distribution. We used phylogenetic generalized least square models to evaluate the effect of thermal variability on range size. Our models included additional covariates that might affect range size: body size, local abundance, mean temperature and total precipitation. We also considered interactions between thermal variability and mean temperature or precipitation. To account for geometric constraints, we repeated our analyses with a standardized measure of range size, calculated by comparing observed range sizes with values obtained from a null model.

    Results

    Our results supported the main prediction of the climate variability hypothesis. Thermal variability had a strong positive effect on the range size, with species exposed to higher thermal variability having broader elevational distributions. Body size and local abundance also had positive, yet weak effects, on elevational range size. Furthermore, there was a strong positive interaction between thermal variability and mean annual temperature.

    Main Conclusions

    Thermal variability had an overriding importance in driving elevational range sizes of woody plants in the Central Andes. Moreover, the relationship between thermal variability and range size might be even stronger in warmer regions, underlining the potential vulnerability of tropical montane floras to the effects of global warming.

     
    more » « less
  5. This item contains version 5.0 of the Madidi Project's full dataset. The zip file contains (1) raw data, which was downloaded from Tropicos (www.tropicos.org) on August 18, 2020; (2) R scripts used to modify, correct, and clean the raw data; (3) clean data that are the output of the R scripts, and which are the point of departure for most uses of the Madidi Dataset; (4) post-cleaning scripts that obtain additional but non-essential information from the clean data (e.g. by extracting environmental data from rasters); and (5) a miscellaneous collection of additional non-essential information and figures. This item also includes the Data Use Policy for this dataset.

    The core dataset of the Madidi Project consists of a network of ~500 forest plots distributed in and around the Madidi National Park in Bolivia. This network contains 50 permanently marked large plots (1-ha), as well as >450 temporary small plots (0.1-ha). Within the large plots, all woody individuals with a dbh ≥10 cm have been mapped, tagged, measured, and identified. Some of these plots have also been re-visited and information on mortality, recruitment, and growth exists. Within the small plots, all woody individuals with a dbh ≥2.5 cm have been measured and identified. Each plot has some edaphic and topographic information, and some large plots have information on various plant functional traits.

    The Madidi Project is a collaborative research effort to document and study plant biodiversity in the Amazonia and Tropical Andes of northwestern Bolivia. The project is currently lead by the Missouri Botanical Garden (MBG), in collaboration with the Herbario Nacional de Bolivia. The management of the project is at MBG, where J. Sebastian Tello (sebastian.tello@mobot.org) is the scientific director. The director oversees the activities of a research team based in Bolivia. MBG works in collaboration with other data contributors (currently: Manuel J. Macía [manuel.macia@uam.es], Gabriel Arellano [gabriel.arellano.torres@gmail.com] and Beatriz Nieto [sonneratia@gmail.com]), with a representative from the Herbario Nacional de Bolivia (LPB; Carla Maldonado [carla.maldonado1@gmail.com]), as well as with other close associated researchers from various institutions. For more information regarding the organization and objectives of the Madidi Project, you can visit the project’s website (www.madidiproject.weebly.com).

    The Madidi project has been supported by generous grants from the National Science Foundation (DEB 0101775, DEB 0743457, DEB 1836353), and the National Geographic Society (NGS 7754-04 and NGS 8047-06). Additional financial support for the Madidi Project has been provided by the Missouri Botanical Garden, the Comunidad de Madrid (Spain), the Universidad Autónima de Madrid, and the Taylor and Davidson families. 
    more » « less
  6. Abstract We introduce the FunAndes database, a compilation of functional trait data for the Andean flora spanning six countries. FunAndes contains data on 24 traits across 2,694 taxa, for a total of 105,466 entries. The database features plant-morphological attributes including growth form, and leaf, stem, and wood traits measured at the species or individual level, together with geographic metadata (i.e., coordinates and elevation). FunAndes follows the field names, trait descriptions and units of measurement of the TRY database. It is currently available in open access in the FIGSHARE data repository, and will be part of TRY’s next release. Open access trait data from Andean plants will contribute to ecological research in the region, the most species rich terrestrial biodiversity hotspot. 
    more » « less