skip to main content


Search for: All records

Creators/Authors contains: "Mao, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Galactic plane radio surveys play a key role in improving our understanding of a wide range of astrophysical phenomena. Performing such a survey using the latest interferometric telescopes produces large data rates necessitating a shift towards fully or quasi-real-time data analysis with data being stored for only the time required to process them. We present here the overview and set-up for the 3000-h Max-Planck-Institut für Radioastronomie (MPIfR)–MeerKAT Galactic Plane Survey (MMGPS). The survey is unique by operating in a commensal mode, addressing key science objectives of the survey including the discovery of new pulsars and transients and studies of Galactic magnetism, the interstellar medium and star formation rates. We explain the strategy coupled with the necessary hardware and software infrastructure needed for data reduction in the imaging, spectral, and time domains. We have so far discovered 78 new pulsars including 17 confirmed binary systems of which two are potential double neutron star systems. We have also developed an imaging pipeline sensitive to the order of a few tens of micro-Jansky ($\mu{\rm Jy}$) with a spatial resolution of a few arcseconds. Further science operations with an in-house built S-band receiver operating between 1.7 and 3.5 GHz are about to commence. Early spectral line commissioning observations conducted at S-band, targeting transitions of the key molecular gas tracer CH at 3.3 GHz already illustrate the spectroscopic capabilities of this instrument. These results lay a strong foundation for future surveys with telescopes like the Square Kilometre Array (SKA).

     
    more » « less
  2. ABSTRACT

    We present the polarization profiles of 22 pulsars in the globular cluster 47 Tucanae using observations from the MeerKAT radio telescope at UHF band (544–1088 MHz) and report precise values of dispersion measure (DM) and rotation measure (RM). We use these measurements to investigate the presence of turbulence in electron density and magnetic fields. The structure function of DM shows a break at ∼30 arcsec (∼0.6 pc at the distance of 47 Tucanae) that suggests the presence of turbulence in the gas in the cluster driven by the motion of wind-shedding stars. On the other hand, the structure function of RM does not show evidence of a break. This non-detection could be explained either by the limited number of pulsars or by the effects of the intervening gas in the Galaxy along the line of sight. Future pulsar discoveries in the cluster could help confirm the presence and localize the turbulence.

     
    more » « less
  3. null (Ed.)
    It has been recognized that jobs across different domains is becoming more data driven, and many aspects of the economy, society, and daily life depend more and more on data. Undergraduate education offers a critical link in providing more data science and engineering (DSE) exposure to students and expanding the supply of DSE talent. The National Academies have identified that effective DSE education requires both appropriate classwork and hands-on experience with real data and real applications. Currently significant progress has been made in classwork, while progress in hands-on research experience has been lacking. To fill this gap, we have proposed to create data-enabled engineering project (DEEP) modules based on real data and applications, which is currently funded by the National Science Foundation (NSF) under the Improving Undergraduate STEM Education (IUSE) program. To achieve project goal, we have developed two internet-of-things (IoT) enabled laboratory engineering testbeds (LETs) and generated real data under various application scenarios. In addition, we have designed and developed several sample DEEP modules in interactive Jupyter Notebook using the generated data. These sample DEEP modules will also be ported to other interactive DSE learning environments, including Matlab Live Script and R Markdown, for wide and easy adoption. Finally, we have conducted metacognitive awareness gain (MAG) assessments to establish a baseline for assessing the effectiveness of DEEP modules in enhancing students’ reflection and metacognition. The DEEP modules that are currently being developed target students in Chemical Engineering, Electrical Engineering, Computer Science, and MS program in Data Science at xxx University. The modules will be deployed in the Spring of 2021, and we expect to have immediate impact to the targeted classes and students. We also anticipate that the DEEP modules can be adopted without modification to other disciplines in Engineering such as Mechanical, Industrial and Aerospace Engineering. They can also be easily extended to other disciplines in other colleges such as Liberal Arts by incorporating real data and applications from the respective disciplines. In this work, we will share our ideas, the rationale behind the proposed approach, the planned tasks for the project, the demonstration of modules developed, and potential dissemination venues. 
    more » « less
  4. Abstract We report on the observations, analysis and interpretation of the microlensing event MOA-2019-BLG-008. The observed anomaly in the photometric light curve is best described through a binary lens model. In this model, the source did not cross caustics and no finite-source effects were observed. Therefore, the angular Einstein ring radius θ E cannot be measured from the light curve alone. However, the large event duration, t E ∼ 80 days, allows a precise measurement of the microlensing parallax π E . In addition to the constraints on the angular radius θ * and the apparent brightness I s of the source, we employ the Besançon and GalMod galactic models to estimate the physical properties of the lens. We find excellent agreement between the predictions of the two galactic models: the companion is likely a resident of the brown dwarf desert with a mass M p ∼ 30 M Jup , and the host is a main-sequence dwarf star. The lens lies along the line of sight to the Galactic bulge, at a distance of ≤4 kpc. We estimate that in about 10 yr the lens and source will be separated by ∼55 mas, and it will be possible to confirm the exact nature of the lensing system by using high-resolution imaging from ground- or space-based observatories. 
    more » « less
  5. Context. Brown dwarfs are transition objects between stars and planets that are still poorly understood, for which several competing mechanisms have been proposed to describe their formation. Mass measurements are generally difficult to carry out for isolated objects as well as for brown dwarfs orbiting low-mass stars, which are often too faint for a spectroscopic follow-up. Aims. Microlensing provides an alternative tool for the discovery and investigation of such faint systems. Here, we present an analysis of the microlensing event OGLE-2019-BLG-0033/MOA-2019-BLG-035, which is caused by a binary system composed of a brown dwarf orbiting a red dwarf. Methods. Thanks to extensive ground observations and the availability of space observations from Spitzer, it has been possible to obtain accurate estimates of all microlensing parameters, including the parallax, source radius, and orbital motion of the binary lens. Results. Following an accurate modeling process, we found that the lens is composed of a red dwarf with a mass of M 1 = 0.149 ± 0.010 M ⊙ and a brown dwarf with a mass of M 2 = 0.0463 ± 0.0031 M ⊙ at a projected separation of a ⊥ = 0.585 au. The system has a peculiar velocity that is typical of old metal-poor populations in the thick disk. A percent-level precision in the mass measurement of brown dwarfs has been achieved only in a few microlensing events up to now, but will likely become more common in the future thanks to the Roman space telescope. 
    more » « less