skip to main content


Search for: All records

Creators/Authors contains: "Marathe, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep Learning for Time-series plays a key role in AI for healthcare. To predict the progress of infectious disease outbreaks and demonstrate clear population-level impact, more granular analyses are urgently needed that control for important and potentially confounding county-level socioeconomic and health factors. We forecast US county-level COVID-19 infections using the Temporal Fusion Transformer (TFT). We focus on heterogeneous time-series deep learning model prediction while interpreting the complex spatiotemporal features learned from the data. The significance of the work is grounded in a real-world COVID-19 infection prediction with highly non-stationary, finely granular, and heterogeneous data. 1) Our model can capture the detailed daily changes of temporal and spatial model behaviors and achieves better prediction performance compared to other time-series models. 2) We analyzed the attention patterns from TFT to interpret the temporal and spatial patterns learned by the model. 3) We collected around 2.5 years of socioeconomic and health features for 3142 US counties, such as observed cases, and a number of static (age distribution and health disparity) and dynamic features (vaccination, disease spread, transmissible cases, and social distancing). Using the proposed framework, we have shown that our model can learn complex interactions. Interpreting different impacts at the county level would be crucial for understanding the infection process that can help effective public health decision-making. 
    more » « less
  2. null (Ed.)
    Vaccination is the primary intervention for controlling the spread of infectious diseases. A certain level of vaccination rate (referred to as “herd immunity”) is needed for this intervention to be effective. However, there are concerns that herd immunity might not be achieved due to an increasing level of hesitancy and opposition to vaccines. One of the primary reasons for this is the cost of non-conformance with one’s peers. We use the framework of network coordination games to study the persistence of anti-vaccine sentiment in a population. We extend it to incorporate the opposing forces of the pressure of conforming to peers, herd-immunity and vaccination benefits. We study the structure of the equilibria in such games, and the characteristics of unvaccinated nodes. We also study Stackelberg strategies to reduce the number of nodes with anti-vaccine sentiment. Finally, we evaluate our results on different kinds of real world social networks. 
    more » « less
  3. null (Ed.)
    We study allocation of COVID-19 vaccines to individuals based on the structural properties of their underlying social contact network. Even optimistic estimates suggest that most countries will likely take 6 to 24 months to vaccinate their citizens. These time estimates and the emergence of new viral strains urge us to find quick and effective ways to allocate the vaccines and contain the pandemic. While current approaches use combinations of age-based and occupation-based prioritizations, our strategy marks a departure from such largely aggregate vaccine allocation strategies. We propose a novel agent-based modeling approach motivated by recent advances in (i) science of real-world networks that point to efficacy of certain vaccination strategies and (ii) digital technologies that improve our ability to estimate some of these structural properties. Using a realistic representation of a social contact network for the Commonwealth of Virginia, combined with accurate surveillance data on spatio-temporal cases and currently accepted models of within- and between-host disease dynamics, we study how a limited number of vaccine doses can be strategically distributed to individuals to reduce the overall burden of the pandemic. We show that allocation of vaccines based on individuals' degree (number of social contacts) and total social proximity time is signi ficantly more effective than the currently used age-based allocation strategy in terms of number of infections, hospitalizations and deaths. Our results suggest that in just two months, by March 31, 2021, compared to age-based allocation, the proposed degree-based strategy can result in reducing an additional 56{110k infections, 3.2{5.4k hospitalizations, and 700{900 deaths just in the Commonwealth of Virginia. Extrapolating these results for the entire US, this strategy can lead to 3{6 million fewer infections, 181{306k fewer hospitalizations, and 51{62k fewer deaths compared to age-based allocation. The overall strategy is robust even: (i) if the social contacts are not estimated correctly; (ii) if the vaccine efficacy is lower than expected or only a single dose is given; (iii) if there is a delay in vaccine production and deployment; and (iv) whether or not non-pharmaceutical interventions continue as vaccines are deployed. For reasons of implementability, we have used degree, which is a simple structural measure and can be easily estimated using several methods, including the digital technology available today. These results are signi ficant, especially for resource-poor countries, where vaccines are less available, have lower efficacy, and are more slowly distributed. 
    more » « less