skip to main content


Search for: All records

Creators/Authors contains: "Marcy, Geoffrey W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We report on three optically bright, ∼16th mag, point sources within 10 arcsec of each other that vanished within 1 h, based on two consecutive exposures at Palomar Observatory on 1952 July 19 (POSS I Red and Blue). The three point sources have continued to be absent in telescope exposures during 71 yr with detection thresholds of ∼21st mag. We obtained two deep exposures with the 10.4-m Gran Telescopio Canarias on 2023 April 25 and 27 in r and g band, both reaching magnitude 25.5 (3σ). The three point sources are still absent, implying they have dimmed by more than 10 mag within an hour back in 1952. When bright in 1952, the most isolated transient source has a profile nearly the same as comparison stars, implying the sources are subarcsec in angular size and they exhibit no elongation due to movement. This triple transient has observed properties similar to other cases where groups of transients (‘multiple transients’) have appeared and vanished in a small region within a plate exposure. The explanation for these three transients and the previously reported cases remains unclear. Models involving background objects that are optically luminous for less than 1 h coupled with foreground gravitational lensing seem plausible. If so, a significant population of massive objects with structure serving as the lenses, to produce three images, are required to explain the subhour transients.

     
    more » « less
  2. We present overall specifications and science goals for a new optical and near-infrared (350 - 1650 nm) instru- ment designed to greatly enlarge the current Search for Extraterrestrial Intelligence (SETI) phase space. The Pulsed All-sky Near-infrared Optical SETI (PANOSETI) observatory will be a dedicated SETI facility that aims to increase sky area searched, wavelengths covered, number of stellar systems observed, and duration of time monitored. This observatory will offer an “all-observable-sky” optical and wide-field near-infrared pulsed tech- nosignature and astrophysical transient search that is capable of surveying the entire northern hemisphere. The final implemented experiment will search for transient pulsed signals occurring between nanosecond to second time scales. The optical component will cover a solid angle 2.5 million times larger than current SETI targeted searches, while also increasing dwell time per source by a factor of 10,000. The PANOSETI instrument will be the first near-infrared wide-field SETI program ever conducted. The rapid technological advance of fast-response optical and near-infrared detector arrays (i.e., Multi-Pixel Photon Counting; MPPC) make this program now feasible. The PANOSETI instrument design uses innovative domes that house 100 Fresnel lenses, which will search concurrently over 8,000 square degrees for transient signals (see Maire et al. and Cosens et al., this conference). In this paper, we describe the overall instrumental specifications and science objectives for PANOSETI. 
    more » « less
  3. null (Ed.)