skip to main content


Search for: All records

Creators/Authors contains: "Marin-Spiotta, E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Soil hydrology provides important background for understanding the fate of organic carbon (OC) buried by geomorphic processes as well as the influence of runoff, infiltration, and plant root uptake on long‐term erosion and landscape evolution. We modeled the hydrology of a 4.5‐m loess‐paleosol sequence on an eroding tableland in the U.S. central Great Plains using Hydrus 1D, a numerical unsaturated flow model, parameterized with high resolution measurements of the soil water retention and hydraulic conductivity curves, which were distinct for the loess and paleosols. We hypothesized that (a) the connection of paleosols to modern climate depends on their burial depth, (b) paleosols in the root zone would have broader pore‐size distributions than unweathered loess, and (c) this broader pore‐size distribution increased root water uptake and made vegetation more resilient to drought, increasing the stability of loess tablelands despite high erodibility and high local relief. Four years with varying total annual precipitation were simulated for the observed profile and two hypothetical profiles, one without paleosols and another with a shallow, strongly developed paleosol. In these simulations, soil moisture in shallow paleosols responds quickly to precipitation while a deeply buried paleosol is largely disconnected from the modern climate, contributing to buried OC preservation. Contrary to our expectation, the presence of paleosols did not increase root uptake relative to unweathered loess in either wet or dry years. The unweathered coarse loess we studied may have an optimal pore‐size distribution for root uptake, providing an alternative hypothesis for why highly erodible loess tablelands persist.

     
    more » « less
  2. The geosciences are one of the least diverse disciplines in the United States, despite the field's relevance to livelihoods and local and global economies. Bias, discrimination, and harassment present serious hurdles to diversifying the field. These behaviors persist due to historical structures of exclusion, severe power imbalances, unique challenges associated with geoscientist stereotypes, and a culture of impunity that tolerates exclusionary behaviors and marginalization of scholars from underserved groups. We summarize recent research on exclusionary behaviors that create hostile climates and contribute to persistent low retention of diverse groups in the geosciences and other science, technology, engineering, and mathematics (STEM) fields. We then discuss recent initiatives in the US by geoscience professional societies and organizations, including the National Science Foundation-supported ADVANCEGeo Partnership, to improve diversity, equity, and inclusion by improving workplace climate. Social networks and professional organizations can transform scientific culture through providing opportunities for mentorship and community building and counteracting professional isolation that can result from experiencing hostile behaviors, codifying ethical practice, and advocating for policy change. We conclude with a call for a reexamination of current institutional structures, processes, and practices for a transformational and equitable scientific enterprise. To be truly successful, cultural and behavioral changes need to be accompanied by reeducation about the historical political structures of academic institutions to start conversations about the real change that has to happen for a transformational and equitable scientific enterprise. 
    more » « less