skip to main content


Search for: All records

Creators/Authors contains: "Martin, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract In this paper we introduce a Hilbert series approach to build the operator basis for a N = 1 supersymmetry theory with chiral superfields. We give explicitly the form of the corrections that remove redundancies due to the equations of motion and integration by parts. In addition, we derive the maps between the correction spaces. This technique allows us to calculate the number of independent operators involving chiral and antichiral superfields to arbitrarily high mass dimension. Using this method, we give several illustrative examples. 
    more » « less
    Free, publicly-accessible full text available April 1, 2024
  2. Abstract A dataset to describe exposed bedrock and surficial geology of Antarctica has been constructed by the GeoMAP Action Group of the Scientific Committee on Antarctic Research (SCAR) and GNS Science. Our group captured existing geological map data into a geographic information system (GIS), refined its spatial reliability, harmonised classification, and improved representation of glacial sequences and geomorphology, thereby creating a comprehensive and coherent representation of Antarctic geology. A total of 99,080 polygons were unified for depicting geology at 1:250,000 scale, but locally there are some areas with higher spatial resolution. Geological unit definition is based on a mixed chronostratigraphic- and lithostratigraphic-based classification. Description of rock and moraine polygons employs the international Geoscience Markup Language (GeoSciML) data protocols to provide attribute-rich and queryable information, including bibliographic links to 589 source maps and scientific literature. GeoMAP is the first detailed geological map dataset covering all of Antarctica. It depicts ‘known geology’ of rock exposures rather than ‘interpreted’ sub-ice features and is suitable for continent-wide perspectives and cross-discipline interrogation. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. A bstract We calculate pp → ℓ + ν, ℓ − $$ \overline{\nu} $$ ν ¯ to $$ \mathcal{O} $$ O (1 / Λ 4 ) within the Standard Model Effective Field Theory (SMEFT) framework. In particular, we calculate the four-fermion contribution from dimension six and eight operators, which dominates at large center of mass energy. We explore the relative size of the $$ \mathcal{O} $$ O (1 / Λ 4 ) and $$ \mathcal{O} $$ O (1 / Λ 2 ) results for various kinematic regimes and assumptions about the Wilson coefficients. Results for Drell-Yan production pp → ℓ + ℓ − at $$ \mathcal{O} $$ O (1 / Λ 4 ) are also provided. Additionally, we develop the form for four fermion contact term contributions to pp → ℓ + ν, ℓ − $$ \overline{\nu} $$ ν ¯ , pp → ℓ + ℓ − of arbitrary mass dimension. This allows us to estimate the effects from even higher dimensional (dimension > 8) terms in the SMEFT framework. 
    more » « less
  4. A bstract Heavy particles with masses much bigger than the inflationary Hubble scale H * , can get non-adiabatically pair produced during inflation through their couplings to the inflaton. If such couplings give rise to time-dependent masses for the heavy particles, then following their production, the heavy particles modify the curvature perturbation around their locations in a time-dependent and scale non-invariant manner. This results into a non-trivial spatial profile of the curvature perturbation that is preserved on superhorizon scales and eventually generates localized hot or cold spots on the CMB. We explore this phenomenon by studying the inflationary production of heavy scalars and derive the final temperature profile of the spots on the CMB by taking into account the subhorizon evolution, focusing in particular on the parameter space where pairwise hot spots (PHS) arise. When the heavy scalar has an $$ \mathcal{O} $$ O (1) coupling to the inflaton, we show that for an idealized situation where the dominant background to the PHS signal comes from the standard CMB fluctuations themselves, a simple position space search based on applying a temperature cut, can be sensitive to heavy particle masses M 0 /H * ∼ $$ \mathcal{O} $$ O (100). The corresponding PHS signal also modifies the CMB power spectra and bispectra, although the corrections are below (outside) the sensitivity of current measurements (searches). 
    more » « less
  5. null (Ed.)
    A bstract We calculate the $$ \mathcal{O}\left({\left\langle {H}^{\dagger }H\right\rangle}^2/{\Lambda}^4\right) $$ O H † H 2 / Λ 4 corrections to LEP electroweak precision data using the geometric formulation of the Standard Model Effective Field Theory (SMEFT). We report our results in simple-to-use interpolation tables that allow the interpretation of this data set to dimension eight for the first time. We demonstrate the impact of these previously unknown terms in the case of a general analysis in the SMEFT, and also in the cases of two distinct models matched to dimension eight. Neglecting such dimension-eight corrections to LEP observables introduces a theoretical error in SMEFT studies. We report some preliminary studies defining such a theory error, explicitly demonstrating the effect of previously unknown dimension-eight SMEFT corrections on LEP observables. 
    more » « less
  6. null (Ed.)
    A bstract In this paper, we explore the impact of extra radiation on predictions of $$ pp\to \mathrm{t}\overline{\mathrm{t}}\mathrm{X},\mathrm{X}=\mathrm{h}/{\mathrm{W}}^{\pm }/\mathrm{Z} $$ pp → t t ¯ X , X = h / W ± / Z processes within the dimension-6 SMEFT framework. While full next-to-leading order calculations are of course preferred, they are not always practical, and so it is useful to be able to capture the impacts of extra radiation using leading-order matrix elements matched to the parton shower and merged. While a matched/merged leading-order calculation for $$ \mathrm{t}\overline{\mathrm{t}}\mathrm{X} $$ t t ¯ X is not expected to reproduce the next-to-leading order inclusive cross section precisely, we show that it does capture the relative impact of the EFT effects by considering the ratio of matched SMEFT inclusive cross sections to Standard Model values, $$ {\sigma}_{\mathrm{SM}\mathrm{EFT}}\left(\mathrm{t}\overline{\mathrm{t}}\mathrm{X}+\mathrm{j}\right)/{\sigma}_{\mathrm{SM}}\left(\mathrm{t}\overline{\mathrm{t}}\mathrm{X}+\mathrm{j}\right)\equiv \mu $$ σ SMEFT t t ¯ X + j / σ SM t t ¯ X + j ≡ μ . Furthermore, we compare leading order calculations with and without extra radiation and find several cases, such as the effect of the operator $$ \left({\varphi}^{\dagger }i{\overleftrightarrow{D}}_{\mu}\varphi \right)\left(\overline{t}{\gamma}^{\mu }t\right) $$ φ † i D ↔ μ φ t ¯ γ μ t on $$ \mathrm{t}\overline{\mathrm{t}}\mathrm{h} $$ t t ¯ h and $$ \mathrm{t}\overline{\mathrm{t}}\mathrm{W} $$ t t ¯ W , for which the relative cross section prediction increases by more than 10% — significantly larger than the uncertainty derived by varying the input scales in the calculation, including the additional scales required for matching and merging. Being leading order at heart, matching and merging can be applied to all operators and processes relevant to $$ pp\to \mathrm{t}\overline{\mathrm{t}}\mathrm{X},\mathrm{X}=\mathrm{h}/{\mathrm{W}}^{\pm }/\mathrm{Z}+\mathrm{jet} $$ pp → t t ¯ X , X = h / W ± / Z + jet , is computationally fast and not susceptible to negative weights. Therefore, it is a useful approach in $$ \mathrm{t}\overline{\mathrm{t}}\mathrm{X} $$ t t ¯ X + jet studies where complete next-to-leading order results are currently unavailable or unwieldy. 
    more » « less
  7. null (Ed.)
    A bstract The Standard Model Effective Field Theory (SMEFT) theoretical framework is increasingly used to interpret particle physics measurements and constrain physics beyond the Standard Model. We investigate the truncation of the effective-operator expansion using the geometric formulation of the SMEFT, which allows exact solutions, up to mass-dimension eight. Using this construction, we compare the exact solution to the expansion at $$ \mathcal{O} $$ O ( v 2 / Λ 2 ), partial $$ \mathcal{O} $$ O ( v 4 / Λ 4 ) using a subset of terms with dimension-6 operators, and full $$ \mathcal{O} $$ O ( v 4 / Λ 4 ), where v is the vacuum expectation value and Λ is the scale of new physics. This comparison is performed for general values of the coefficients, and for the specific model of a heavy U(1) gauge field kinetically mixed with the Standard Model. We additionally determine the input-parameter scheme dependence at all orders in v/ Λ, and show that this dependence increases at higher orders in v/ Λ. 
    more » « less