skip to main content


Search for: All records

Creators/Authors contains: "Maruyama, R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Testing the DAMA/LIBRA annual modulation result independently of dark matter particle and halo models has been a challenge for twenty years. Using the same target material, NaI(Tl), is required and presently two experiments, ANAIS-112 and COSINE-100, are running for such a goal. A precise knowledge of the detector response to nuclear recoils is mandatory because this is the most likely channel to find the dark matter signal. The light produced by nuclear recoils is quenched with respect to that produced by electrons by a factor that has to be measured experimentally. However, current quenching factor measurements in NaI(Tl) crystals disagree within the energy region of interest for dark matter searches. To disentangle whether this discrepancy is due to intrinsic differences in the light response among different NaI(Tl) crystals, or has its origin in unaccounted for systematic effects will be key in the comparison among the different experiments. We present measurements of the quenching factors for five small NaI(Tl) crystals performed in the same experimental setup to control systematics. Quenching factor results are compatible between crystals and no clear dependence with energy is observed from 10 to 80 keVnr. 
    more » « less
  2. Free, publicly-accessible full text available June 1, 2024
  3. null (Ed.)
  4. Free, publicly-accessible full text available June 1, 2024
  5. Abstract

    IceCube alert events are neutrinos with a moderate-to-high probability of having astrophysical origin. In this study, we analyze 11 yr of IceCube data and investigate 122 alert events and a selection of high-energy tracks detected between 2009 and the end of 2021. This high-energy event selection (alert events + high-energy tracks) has an average probability of ≥0.5 of being of astrophysical origin. We search for additional continuous and transient neutrino emission within the high-energy events’ error regions. We find no evidence for significant continuous neutrino emission from any of the alert event directions. The only locally significant neutrino emission is the transient emission associated with the blazar TXS 0506+056, with a local significance of 3σ, which confirms previous IceCube studies. When correcting for 122 test positions, the globalp-value is 0.156 and compatible with the background hypothesis. We constrain the total continuous flux emitted from all 122 test positions at 100 TeV to be below 1.2 × 10−15(TeV cm2s)−1at 90% confidence assuming anE−2spectrum. This corresponds to 4.5% of IceCube’s astrophysical diffuse flux. Overall, we find no indication that alert events in general are linked to lower-energetic continuous or transient neutrino emission.

     
    more » « less