skip to main content


Search for: All records

Creators/Authors contains: "Mascagna, V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We have observed a significant enhancement in the energy deposition by 25–$$100~\textrm{GeV}$$100GeVphotons in a$$1~\textrm{cm}$$1cmthick tungsten crystal oriented along its$$\langle 111 \rangle $$111lattice axes. At$$100~\textrm{GeV}$$100GeV, this enhancement, with respect to the value observed without axial alignment, is more than twofold. This effect, together with the measured huge increase in secondary particle generation is ascribed to the acceleration of the electromagnetic shower development by the strong axial electric field. The experimental results have been critically compared with a newly developed Monte Carlo adapted for use with crystals of multi-$$X_0$$X0thickness. The results presented in this paper may prove to be of significant interest for the development of high-performance photon absorbers and highly compact electromagnetic calorimeters and beam dumps for use at the energy and intensity frontiers.

     
    more » « less
  2. null (Ed.)
  3. The double-spin-polarization observable E for γ p → pπ0 has been measured with the CEBAF Large Acceptance Spectrometer (CLAS) at photon beam energies Eγ from 0.367 to 2.173 GeV (corresponding to center-ofmass energies from 1.240 to 2.200 GeV) for pion center-ofmass angles, cos θc.m. π0 , between − 0.86 and 0.82. These new CLAS measurements cover a broader energy range and have smaller uncertainties compared to previous CBELSA data and provide an important independent check on systematics. These measurements are compared to predictions as well as new global fits from The George Washington University, Mainz, and Bonn-Gatchina groups. Their inclusion in multipole analyses will allow us to refine our understanding of the single-pion production contribution to the Gerasimov-Drell- Hearn sum rule and improve the determination of resonance properties, which will be presented in a future publication. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. Free, publicly-accessible full text available June 1, 2024
  6. Free, publicly-accessible full text available May 1, 2024