skip to main content


Search for: All records

Creators/Authors contains: "Matthaeus, W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Magnetic reconnection is a fundamental process in space and astrophysical plasmas that converts magnetic energy to particle energy. Recently, a novel kind of reconnection, called electron-only reconnection, has been observed in Earth's magnetosheath plasma. A defining characteristic of electron-only reconnection is that electron jets are observed but ion jets are absent. This is in contrast with traditional ion-coupled reconnection, where both ions and electrons exhibit outflowing velocity jets. Findings from the Magnetospheric Multiscale mission observations and particle-in-cell simulations show clear signatures of electron heating in electron-only reconnection events, while ions are not heated or cooled in these events. This result is unlike ion-coupled reconnection, where both ions and electrons are heated to varying degrees. The ratio of electron to ion dissipation increases with the local magnetic curvature, indicating that the partition of heat into ions and electrons is dependent on the current-sheet thickness.

     
    more » « less
  2. ABSTRACT

    In this study, we explore the statistics of pressure fluctuations in kinetic collisionless turbulence. A 2.5D kinetic particle-in-cell simulation of decaying turbulence is used to investigate pressure balance via the evolution of thermal and magnetic pressure in a plasma with β of order unity. We also discuss the behaviour of thermal, magnetic, and total pressure structure functions and their corresponding wavenumber spectra. The total pressure spectrum exhibits a slope of −7/3 extending for about a decade in the ion-inertial range. In contrast, shallower −5/3 spectra are characteristic of the magnetic pressure and thermal pressure. The steeper total pressure spectrum is a consequence of cancellation caused by density-magnetic field magnitude anti-correlation. Further, we evaluate higher order total pressure structure functions in an effort to discuss intermittency and compare the power exponents with higher order structure functions of velocity and magnetic fluctuations. Finally, applications to astrophysical systems are also discussed.

     
    more » « less
  3. ABSTRACT

    In turbulence, non-linear terms drive energy transfer from large-scale eddies into small scales through the so-called energy cascade. Turbulence often relaxes toward states that minimize energy; typically these states are considered globally. However, turbulence can also relax toward local quasi-equilibrium states, creating patches or cells where the magnitude of non-linearity is reduced and the energy cascade is impaired. We show, using data from the Magnetospheric Multiscale (MMS) mission, and for the first time, compelling observational evidence that this ‘cellularization’ of turbulence can occur due to local relaxation in a strongly turbulent natural environment such as the Earth’s magnetosheath.

     
    more » « less
  4. We discuss the phenomenon of energization of relativistic charged particles in three-dimensional incompressible MHD turbulence and the diffusive properties of the motion of the same particles. We show that the random electric field induced by turbulent plasma motion leads test particles moving in a simulated box to be accelerated in a stochastic way, a second-order Fermi process. A small fraction of these particles happen to be trapped in large scale structures, most likely formed due to the interaction of islands in the turbulence. Such particles get accelerated exponentially, provided their pitch angle satisfies some conditions. We discuss at length the characterization of the accelerating structure and the physical processes responsible for rapid acceleration. We also comment on the applicability of the results to realistic astrophysical turbulence. 
    more » « less
  5. Abstract

    Despite decades of study of high-temperature weakly collisional plasmas, a complete understanding of how energy is transferred between particles and fields in turbulent plasmas remains elusive. Two major questions in this regard are how fluid-scale energy transfer rates, associated with turbulence, connect with kinetic-scale dissipation, and what controls the fraction of dissipation on different charged species. Although the rate of cascade has long been recognized as a limiting factor in the heating rate at kinetic scales, there has not been direct evidence correlating the heating rate with MHD-scale cascade rates. Using kinetic simulations and in situ spacecraft data, we show that the fluid-scale energy flux indeed accounts for the total energy dissipated at kinetic scales. A phenomenology, based on disruption of proton gyromotion by fluctuating electric fields that are produced in turbulence at proton scales, argues that the proton versus electron heating is controlled by the ratio of the nonlinear timescale to the proton cyclotron time and by the plasma beta. The proposed scalings are supported by the simulations and observations.

     
    more » « less
  6. We demonstrate an efficient mechanism for generating magnetic fields in turbulent, collisionless plasmas. By using fully kinetic, particle-in-cell simulations of an initially nonmagnetized plasma, we inspect the genesis of magnetization, in a nonlinear regime. The complex motion is initiated via a Taylor–Green vortex, and the plasma locally develops strong electron temperature anisotropy, due to the strain tensor of the turbulent flow. Subsequently, in a domino effect, the anisotropy triggers a Weibel instability, localized in space. In such active wave–particle interaction regions, the seed magnetic field grows exponentially and spreads to larger scales due to the interaction with the underlying stirring motion. Such a self-feeding process might explain magnetogenesis in a variety of astrophysical plasmas, wherever turbulence is present. 
    more » « less
  7. null (Ed.)
    ABSTRACT The physical foundations of the dissipation of energy and the associated heating in weakly collisional plasmas are poorly understood. Here, we compare and contrast several measures that have been used to characterize energy dissipation and kinetic-scale conversion in plasmas by means of a suite of kinetic numerical simulations describing both magnetic reconnection and decaying plasma turbulence. We adopt three different numerical codes that can also include interparticle collisions: the fully kinetic particle-in-cell vpic, the fully kinetic continuum Gkeyll, and the Eulerian Hybrid Vlasov–Maxwell (HVM) code. We differentiate between (i) four energy-based parameters, whose definition is related to energy transfer in a fluid description of a plasma, and (ii) four distribution function-based parameters, requiring knowledge of the particle velocity distribution function. There is an overall agreement between the dissipation measures obtained in the PIC and continuum reconnection simulations, with slight differences due to the presence/absence of secondary islands in the two simulations. There are also many qualitative similarities between the signatures in the reconnection simulations and the self-consistent current sheets that form in turbulence, although the latter exhibits significant variations compared to the reconnection results. All the parameters confirm that dissipation occurs close to regions of intense magnetic stresses, thus exhibiting local correlation. The distribution function-based measures show a broader width compared to energy-based proxies, suggesting that energy transfer is co-localized at coherent structures, but can affect the particle distribution function in wider regions. The effect of interparticle collisions on these parameters is finally discussed. 
    more » « less
  8. null (Ed.)
  9. Abstract In this paper we examine a low-energy solar energetic particle (SEP) event observed by IS⊙IS’s Energetic Particle Instrument-Low (EPI-Lo) inside 0.18 au on 2020 September 30. This small SEP event has a very interesting time profile and ion composition. Our results show that the maximum energy and peak in intensity are observed mainly along the open radial magnetic field. The event shows velocity dispersion, and strong particle anisotropies are observed throughout the event, showing that more particles are streaming outward from the Sun. We do not see a shock in the in situ plasma or magnetic field data throughout the event. Heavy ions, such as O and Fe, were detected in addition to protons and 4He, but without significant enhancements in 3He or energetic electrons. Our analysis shows that this event is associated with a slow streamer blowout coronal mass ejection (SBO-CME), and the signatures of this small CME event are consistent with those typical of larger CME events. The time–intensity profile of this event shows that the Parker Solar Probe encountered the western flank of the SBO-CME. The anisotropic and dispersive nature of this event in a shockless local plasma gives indications that these particles are most likely accelerated remotely near the Sun by a weak shock or compression wave ahead of the SBO-CME. This event may represent direct observations of the source of the low-energy SEP seed particle population. 
    more » « less