skip to main content


Search for: All records

Creators/Authors contains: "Matzner, Christopher D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    SN 2021aefxis a normal Type Ia supernova (SN) showing excess emission and redward color evolution over the first ∼ 2 days. We present analyses of this SN using our high-cadence KMTNet multiband photometry, spectroscopy, and publicly available data, including first measurements of its explosion epoch (MJD 59529.32 ± 0.16) and onset of power-law rise (tPL= MJD 59529.85 ± 0.55; often calledfirst light) associated with the main ejecta56Ni distribution. The first KMTNet detection of SN 2021aefx precedestPLby ∼ 0.5 hr, indicating presence of additional power sources. Our peak-spectrum confirms its intermediate Type Ia subclassification between core-normal and broad-Line, and we estimate an ejecta mass of ∼ 1.34M. The spectral evolution identifies material reaching >40,000 km s−1(fastest ever observed in Type Ia SNe) and at least two split-velocity ejecta components expanding homologously: (1) a normal-velocity (∼ 12,400 km s−1) component consistent with typical photospheric evolution of near-Chandrasekhar-mass ejecta; and (2) a high-velocity (∼ 23,500 km s−1) secondary component visible during the first ∼ 3.6 days post-explosion, which locates the component within the outer <16% of the ejecta mass. Asymmetric subsonic explosion processes producing a nonspherical secondary photosphere provide an explanation for the simultaneous appearance of the two components, and may also explain the excess emission via a slight56Ni enrichment in the outer ∼ 0.5% of the ejecta mass. Our 300 days post-peak nebular-phase spectrum advances constraints against nondegenerate companions and further supports a near-Chandrasekhar-mass explosion origin. Off-center ignited delayed-detonations are likely responsible for the observed features of SN 2021aefx in some normal Type Ia SNe.

     
    more » « less
  2. Abstract

    SN 2018aoz is a Type Ia SN with aB-band plateau and excess emission in infant-phase light curves ≲1 day after the first light, evidencing an over-density of surface iron-peak elements as shown in our previous study. Here, we advance the constraints on the nature and origin of SN 2018aoz based on its evolution until the nebular phase. Near-peak spectroscopic features show that the SN is intermediate between two subtypes of normal Type Ia: core normal and broad line. The excess emission may be attributable to the radioactive decay of surface iron-peak elements as well as the interaction of ejecta with either the binary companion or a small torus of circumstellar material. Nebular-phase limits on Hαand Heifavor a white dwarf companion, consistent with the small companion size constrained by the low early SN luminosity, while the absence of [Oi] and Heidisfavors a violent merger of the progenitor. Of the two main explosion mechanisms proposed to explain the distribution of surface iron-peak elements in SN 2018aoz, the asymmetric Chandrasekhar-mass explosion is less consistent with the progenitor constraints and the observed blueshifts of nebular-phase [Feii] and [Niii]. The helium-shell double-detonation explosion is compatible with the observed lack of C spectral features, but current 1D models are incompatible with the infant-phase excess emission,BmaxVmaxcolor, and weak strength of nebular-phase [Caii]. Although the explosion processes of SN 2018aoz still need to be more precisely understood, the same processes could produce a significant fraction of Type Ia SNe that appear to be normal after ∼1 day.

     
    more » « less
  3. ABSTRACT The role played by magnetic field during star formation is an important topic in astrophysics. We investigate the correlation between the orientation of star-forming cores (as defined by the core major axes) and ambient magnetic field directions in (i) a 3D magnetohydrodynamic simulation, (ii) synthetic observations generated from the simulation at different viewing angles, and (iii) observations of nearby molecular clouds. We find that the results on relative alignment between cores and background magnetic field in synthetic observations slightly disagree with those measured in fully 3D simulation data, which is partly because cores identified in projected 2D maps tend to coexist within filamentary structures, while 3D cores are generally more rounded. In addition, we examine the progression of magnetic field from pc to core scale in the simulation, which is consistent with the anisotropic core formation model that gas preferably flows along the magnetic field towards dense cores. When comparing the observed cores identified from the Green Bank Ammonia Survey and Planck polarization-inferred magnetic field orientations, we find that the relative core–field alignment has a regional dependence among different clouds. More specifically, we find that dense cores in the Taurus molecular cloud tend to align perpendicular to the background magnetic field, while those in Perseus and Ophiuchus tend to have random (Perseus) or slightly parallel (Ophiuchus) orientations with respect to the field. We argue that this feature of relative core–field orientation could be used to probe the relative significance of the magnetic field within the cloud. 
    more » « less