skip to main content


Search for: All records

Creators/Authors contains: "McGill, Stephen A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. The Metal-Insulator phase transition (MIT) is one of the most interesting phenomena to study particularly in two-dimensional transition-metal dichalcogendes (TMDCs). A few recent studies1,2 have indicated a possible MIT on MoS2 and ReS2, but the nature of the MIT is still enigmatic due to the interplay between charge carriers and disorder in 2D systems. We will present a potential MIT in few-layered MoSe2 FETs based on four-terminal conductivity measurements. Conductivities measured in multiple samples strongly demonstrate the insulating-to-metallic-like phase transition when the charge carrier density increased above a critical threshold. The nature of the phase transition will be discussed with an existing theoretical model. 1B. H. Moon et al, Nat Commun. 2018; 9: 2052. 2N. R. Pradhan et al, Nano Lett. 2015, 15, 12, 8377 *This work was performed, in part, at the Center for Nanoscale Materials, a U.S. Department of Energy Office of Science User Facility, and supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. This work is also supported by NSF-DMR #1826886 and # 1900692. A portion of this work was performed at the NHMFL, which is supported by the NSF Cooperative Agreement No. DMR-1644779 and the State of Florida 
    more » « less
  4. We report intrinsic photoconductivity studies on one of the least examined layered compounds, ZrS2.Few-atomic layer ZrS2 field-effect transistors were fabricated on the Si/SiO2 substrate and photoconductivity measurements were performed using both two- and four-terminal configurations under the illumination of 532 nm laser source. We measured photocurrent as a function of the incident optical power at several source-drain (bias) voltages. We observe a significantly large photoconductivity when measured in the multiterminal (four-terminal) configuration compared to that in the two-terminal configuration. For an incident optical power of 90 nW, the estimated photosensitivity and the external quantum efficiency (EQE) measured in two-terminal configuration are 0.5 A/W and 120%, respectively, under a bias voltage of 650 mV. Under the same conditions, the four-terminal measurements result in much higher values for both the photoresponsivity (R) and EQE to 6 A/W and 1400%, respectively. This significant improvement in photoresponsivity and EQE   in the four-terminal configuration may have been influenced by the reduction of contact resistance at the metal-semiconductor interface, which greatly impacts the carrier mobility of low conducting materials. This suggests that photoconductivity measurements performed through the two-terminal configuration in previous studies on ZrS2 and other 2D materials have severely underestimated the true intrinsic properties of transition metal dichalcogenides and their remarkable potential for optoelectronic applications. 
    more » « less
  5. The properties of organic molecules can be influenced by magnetic fields, and these magnetic field effects are diverse. They range from inducing nuclear Zeeman splitting for structural determination in NMR spectroscopy to polaron Zeeman splitting organic spintronics and organic magnetoresistance. A pervasive magnetic field effect on an aromatic molecule is the aromatic ring current, which can be thought of as an induction of a circular current of π-electrons upon the application of a magnetic field perpendicular to the π-system of the molecule. While in NMR spectroscopy the effects of ring currents on the chemical shifts of nearby protons are relatively well understood, and even predictable, the consequences of these modified electronic states on the spectroscopy of molecules has remained unknown. In this work, we find that photophysical properties of model phthalocyanine compounds and their aggregates display clear magnetic field dependences up to 25 T, with the aggregates showing more drastic magnetic field sensitivities depending on the intermolecular interactions with the amplification of ring currents in stacked aggregates. These observations are consistent with ring currents measured in NMR spectroscopy and simulated in time-dependent density functional theory calculations of magnetic field-dependent phthalocyanine monomer and dimer absorption spectra. We propose that ring currents in organic semiconductors, which commonly comprise aromatic moieties, may present new opportunities for the understanding and exploitation of combined optical, electronic, and magnetic properties.

     
    more » « less
  6. null (Ed.)
    Among the layered two dimensional semiconductors, molybdenum disulfide (MoS 2 ) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors (FET) and strong light–matter interaction properties. In this study, using multi-terminal measurements, we report high broadband photocurrent response ( R ) and external quantum efficiency (EQE) of few-atomic layered MoS 2 phototransistors fabricated on a SiO 2 dielectric substrate and encapsulated with a thin transparent polymer film of Cytop. The photocurrent response was measured using a white light source as well as a monochromatic light of wavelength λ = 400 nm–900 nm. We measured responsivity using a 2-terminal configuration as high as R = 1 × 10 3 A W −1 under white light illumination with an optical power P opt = 0.02 nW. The R value increased to 3.5 × 10 3 A W −1 when measured using a 4-terminal configuration. Using monochromatic light on the same device, the measured values of R were 10 3 and 6 × 10 3 A W −1 under illumination of λ = 400 nm when measured using 2- and 4-terminal methods, respectively. The highest EQE values obtained using λ = 400 nm were 10 5 % and 10 6 % measured using 2- and 4-terminal configurations, respectively. The wavelength dependent responsivity decreased from 400 nm to the near-IR region at 900 nm. The observed photoresponse, photocurrent–dark current ratio (PDCR), detectivity as a function of applied gate voltage, optical power, contact resistances and wavelength were measured and are discussed in detail. The observed responsivity is also thoroughly studied as a function of contact resistance of the device. 
    more » « less