skip to main content


Search for: All records

Creators/Authors contains: "McGuire, Jimmy A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Divergence dating analyses in systematics provide a framework to develop and test biogeographic hypotheses regarding speciation. However, as molecular datasets grow from multilocus to genomic, sample sizes decrease due to computational burdens, and the testing of fine-scale biogeographic hypotheses becomes difficult. In this study, we use coalescent demographic models to investigate the diversification of poorly known rice paddy snakes from Southeast Asia (Homalopsidae:Hypsiscopus), which have conflicting dates of origin based on previous studies. We use coalescent modeling to test the hypothesis thatHypsiscopusdiversified 2.5 mya during the Khorat Plateau uplift in Thailand. Additionally, we use ecological niche analyses to identify potential differences in the niche space of the two most widely distributed species in the past and present. Our results suggestHypsiscopusdiversified ~ 2.4 mya, supporting that the Khorat Plateau may have initiated the diversification of rice paddy snakes. We also find significant niche differentiation and shifts between species ofHypsiscopus, indicating that environmental differences may have sustained differentiation of this genus after the Khorat Plateau uplift. Our study expands on the diversification history of snakes in Southeast Asia, and highlights how results from smaller multilocus datasets can be useful in developing and testing biogeographic hypotheses alongside genomic datasets.

     
    more » « less
  2. Both frugivores and nectarivores are potentially exposed to dietary ethanol produced by fermentative yeasts which metabolize sugars. Some nectarivorous mammals exhibit a preference for low-concentration ethanol solutions compared to controls of comparable caloric content, but behavioural responses to ethanol by nectar-feeding birds are unknown. We investigated dietary preference by Anna's Hummingbirds (Calypte anna) for ethanol-enhanced sucrose solutions. Via repeated binary-choice experiments, three adult male hummingbirds were exposed to sucrose solutions containing 0%, 1% or 2% ethanol; rates of volitional nectar consumption were measured over a 3 h interval. Hummingbirds did not discriminate between 0% and 1% ethanol solutions, but exhibited significantly reduced rates of consumption of a 2% ethanol solution. Opportunistic measurements of ethanol concentrations within hummingbird feeders registered values peaking at about 0.05%. Ethanol at low concentrations (i.e. up to 1%) is not aversive to Anna's Hummingbirds and may be characteristic of both natural and anthropogenic nectars upon which they feed. Given high daily amounts of nectar consumption by hummingbirds, chronic physiological exposure to ethanol can thus be substantial, although naturally occurring concentrations within floral nectar are unknown.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Abstract Background

    Empirical field studies allow us to view how ecological and environmental processes shape the biodiversity of our planet, but collecting samples in situ creates inherent challenges. The majority of empirical vertebrate gut microbiome research compares multiple host species against abiotic and biotic factors, increasing the potential for confounding environmental variables. To minimize these confounding factors, we focus on a single species of passerine bird found throughout the geologically complex island of Sulawesi, Indonesia. We assessed the effects of two environmental factors, geographic Areas of Endemism (AOEs) and elevation, as well as host sex on the gut microbiota assemblages of the Sulawesi Babbler,Pellorneum celebense,from three different mountains across the island. Using cloacal swabs, high-throughput-amplicon sequencing, and multiple statistical models, we identified the core microbiome and determined the signal of these three factors on microbial composition.

    Results

    The five most prevalent bacterial phyla within the gut microbiome ofP. celebensewereProteobacteria(32.6%),Actinobacteria(25.2%),Firmicutes(22.1%),Bacteroidetes(8.7%), andPlantomycetes(2.6%). These results are similar to those identified in prior studies of passeriform microbiomes. Overall, microbiota diversity decreased as elevation increased, irrespective of sex or AOE. A single ASV ofClostridiumwas enriched in higher elevation samples, while lower elevation samples were enriched with the generaPerlucidibaca(FamilyMoraxellaceae),Lachnoclostridium(FamilyLachnospiraceae), and an unidentified species in the FamilyPseudonocardiaceae.

    Conclusions

    While the core microbiota families recovered here are consistent with other passerine studies, the decreases in diversity as elevation increases has only been seen in non-avian hosts. Additionally, the increased abundance ofClostridiumat high elevations suggests a potential microbial response to lower oxygen levels. This study emphasizes the importance of incorporating multiple statistical models and abiotic factors such as elevation in empirical microbiome research, and is the first to describe an avian gut microbiome from the island of Sulawesi.

     
    more » « less
  4. Abstract

    The biota of Sulawesi is noted for its high degree of endemism and for its substantial levels of in situ biological diversification. While the island’s long period of isolation and dynamic tectonic history have been implicated as drivers of the regional diversification, this has rarely been tested in the context of an explicit geological framework. Here, we provide a tectonically informed biogeographical framework that we use to explore the diversification history of Sulawesi flying lizards (the Draco lineatus Group), a radiation that is endemic to Sulawesi and its surrounding islands. We employ a framework for inferring cryptic speciation that involves phylogeographic and genetic clustering analyses as a means of identifying potential species followed by population demographic assessment of divergence-timing and rates of bi-directional migration as means of confirming lineage independence (and thus species status). Using this approach, phylogenetic and population genetic analyses of mitochondrial sequence data obtained for 613 samples, a 50-SNP data set for 370 samples, and a 1249-locus exon-capture data set for 106 samples indicate that the current taxonomy substantially understates the true number of Sulawesi Draco species, that both cryptic and arrested speciations have taken place, and that ancient hybridization confounds phylogenetic analyses that do not explicitly account for reticulation. The Draco lineatus Group appears to comprise 15 species—9 on Sulawesi proper and 6 on peripheral islands. The common ancestor of this group colonized Sulawesi ~11 Ma when proto-Sulawesi was likely composed of two ancestral islands, and began to radiate ~6 Ma as new islands formed and were colonized via overwater dispersal. The enlargement and amalgamation of many of these proto-islands into modern Sulawesi, especially during the past 3 Ma, set in motion dynamic species interactions as once-isolated lineages came into secondary contact, some of which resulted in lineage merger, and others surviving to the present. [Genomics; Indonesia; introgression; mitochondria; phylogenetics; phylogeography; population genetics; reptiles.]

     
    more » « less
  5. Frogs in the family Ranidae are diverse in Asia and are thought to have dispersed to the Sahul Shelf approximately 10 million years ago, where they radiated into more than a dozen species. Ranid species in the intervening oceanic islands of Wallacea, such as Hylarana florensis and H. elberti from the Lesser Sundas and H. moluccana from eastern Wallacea, are assumed to belong to the subgenus Papurana, yet this has not been confirmed with molecular data. We analyzed mitochondrial DNA of Hylarana species from five islands spanning the reported ranges of H. florensis and H. elberti and compared them to confirmed Papurana species and closely related subgenera within Hylarana. We find that the Lesser Sunda H. florensis and H. elberti form a clade that is sister to the rest of the Australo-Papuan Papurana assemblage. Species delimitation analyses and divergence time estimates suggest that populations of H. florensis on Lombok may be distinct from those on Flores at the species level. Likewise, populations of H. elberti on Sumba and Timor may be distinct from each other and from those on Wetar, tshe type locality of H. elberti. Samples from Babar Island thought to be members of H. elberti in fact belong to the wide-ranging H. daemeli, which occurs in northern Australia, across New Guinea, and on the neighboring island of Tanimbar. These results suggest that the Lesser Sundas may have served as a stepping-stone for colonization of the Sahul Shelf and that species diversity of Papurana frogs is underestimated in the Lesser Sundas.  

     
    more » « less
  6. Abstract

    Cryptogenic species are those whose native and introduced ranges are unknown. The extent and long history of human migration rendered numerous species cryptogenic. Incomplete knowledge regarding the origin and native habitat of a species poses problems for conservation management and may confound ecological and evolutionary studies. The Lesser Antilles pose a particular challenge with regard to cryptogenic species because these islands have been anthropogenically connected since before recorded history. Here, we use population genetic and phylogeographic tools in an attempt to determine the origin ofEleutherodactylus johnstonei, a frog species with a potentially widespread introduced range and whose native range within the Lesser Antilles is unknown. Based on elevated estimates of genetic diversity and within-island geographic structure not present elsewhere in the range, we identify Montserrat as the native island ofE. johnstonei. We also document two major clades withinE. johnstonei, only one of which is the primary source of introduced populations throughout the Americas. Our results demonstrate the utility of genetic tools for resolving cryptogenic species problems and highlightE. johnstoneias a potential system for understanding differences in invasive potential among sister lineages.

     
    more » « less
  7. Field biology is an area of research that involves working directly with living organisms in situ through a practice known as “fieldwork.” Conducting fieldwork often requires complex logistical planning within multiregional or multinational teams, interacting with local communities at field sites, and collaborative research led by one or a few of the core team members. However, existing power imbalances stemming from geopolitical history, discrimination, and professional position, among other factors, perpetuate inequities when conducting these research endeavors. After reflecting on our own research programs, we propose four general principles to guide equitable, inclusive, ethical, and safe practices in field biology: be collaborative, be respectful, be legal, and be safe. Although many biologists already structure their field programs around these principles or similar values, executing equitable research practices can prove challenging and requires careful consideration, especially by those in positions with relatively greater privilege. Based on experiences and input from a diverse group of global collaborators, we provide suggestions for action-oriented approaches to make field biology more equitable, with particular attention to how those with greater privilege can contribute. While we acknowledge that not all suggestions will be applicable to every institution or program, we hope that they will generate discussions and provide a baseline for training in proactive, equitable fieldwork practices. 
    more » « less
  8. Free, publicly-accessible full text available November 22, 2024
  9. Abstract

    Predictable trait variation across environments suggests shared adaptive responses via repeated genetic evolution, phenotypic plasticity or both. Matching of trait–environment associations at phylogenetic and individual scales implies consistency between these processes. Alternatively, mismatch implies that evolutionary divergence has changed the rules of trait–environment covariation. Here we tested whether species adaptation alters elevational variation in blood traits. We measured blood for 1217 Andean hummingbirds of 77 species across a 4600‐m elevational gradient. Unexpectedly, elevational variation in haemoglobin concentration ([Hb]) was scale independent, suggesting that physics of gas exchange, rather than species differences, determines responses to changing oxygen pressure. However, mechanisms of [Hb] adjustment did show signals of species adaptation: Species at either low or high elevations adjusted cell size, whereas species at mid‐elevations adjusted cell number. This elevational variation in red blood cell number versus size suggests that genetic adaptation to high altitude has changed how these traits respond to shifts in oxygen availability.

     
    more » « less