skip to main content


Search for: All records

Creators/Authors contains: "McNamara, Louis E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Iodine binding to thiophene rings in dyes for dye-sensitized solar cells (DSCs) has been hypothesized to be performance degrading in a number of literature cases. Binding of iodine to dyes near the semiconductor surface can promote undesirable electron transfers and lower the overall efficiency of devices. Six thiophene or furan containing dye analogs were synthesized to analyze iodine binding to the dyes via Raman spectroscopy, UV-Vis studies, device performance metrics and density functional theory (DFT) based computations. Evidence suggests I 2 binds thiophene-based dyes stronger than furan-based dyes. This leads to higher DSC device currents and voltages from furan analogues, and longer electron lifetimes in DSC devices using furan based dyes. Raman spectrum of the TiO 2 surface-bound dyes reveals additional and more instense peaks for thiophene dyes in the presence of I 2 relative to no I 2 . Additionally, broader and shifted UV-Vis peaks are observed for thiophene dyes in the presence of I 2 on TiO 2 films suggesting significant interaction between the dye molecules and I 2 . These observations are also supported by DFT and TD-DFT calculations which indicate the absence of a key geometric energy minimum in the dye–I 2 ground state for furan dyes which are readily observed for the thiophene based analogues. 
    more » « less
  2. Abstract

    The ever‐expanding need for renewable energy can be addressed in part by photocatalytic CO2reduction to give fuels via an artificial photosynthetic process driven by sunlight. A series of rhenium photocatalysts are evaluated in the photocatalytic CO2reduction reaction and via photophysical, electrochemical, and computational studies. The impact of various electron withdrawing substituents on the aryl group of the pyNHC‐aryl ligand along with the impact of extending conjugation along the backbone of the ligand is analyzed. A strong correlation between excited‐state lifetimes, photocatalytic rates, and computationally determined dissociation energy of the labile ligand of these complexes is observed. Additionally, computed orbital analysis provides an added understanding, which allows for prediction of the potential impact of an electron withdrawing substituent on photocatalysis.

     
    more » « less