skip to main content


Search for: All records

Creators/Authors contains: "Mednick, Sara C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Central and autonomic nervous system activities are coupled during sleep. Cortical slow oscillations (SOs; <1 Hz) coincide with brief bursts in heart rate (HR), but the functional consequence of this coupling in cognition remains elusive. We measured SO–HR temporal coupling (i.e., the peak-to-peak interval between downstate of SO event and HR burst) during a daytime nap and asked whether this SO–HR timing measure was associated with temporal processing speed and learning on a texture discrimination task by testing participants before and after a nap. The coherence of SO–HR events during sleep strongly correlated with an individual's temporal processing speed in the morning and evening test sessions, but not with their change in performance after the nap (i.e., consolidation). We confirmed this result in two additional experimental visits and also discovered that this association was visit-specific, indicating a state (not trait) marker. Thus, we introduce a novel physiological index that may be a useful marker of state-dependent processing speed of an individual. 
    more » « less
  2. Abstract

    The hippocampus replays experiences during quiet rest periods, and this replay benefits subsequent memory. A critical open question is how memories are prioritized for this replay. We used functional magnetic resonance imaging (fMRI) pattern analysis to track item-level replay in the hippocampus during an awake rest period after participants studied 15 objects and completed a memory test. Objects that were remembered less well were replayed more during the subsequent rest period, suggesting a prioritization process in which weaker memories—memories most vulnerable to forgetting—are selected for replay. In a second session 12 hours later, more replay of an object during a rest period predicted better subsequent memory for that object. Replay predicted memory improvement across sessions only for participants who slept during that interval. Our results provide evidence that replay in the human hippocampus prioritizes weakly learned information, predicts subsequent memory performance, and relates to memory improvement across a delay with sleep.

     
    more » « less
  3. Abstract

    Napping benefits long-term memory formation and is a tool many individuals use to improve daytime functioning. Despite its potential advantages, approximately 47% of people in the United States eschew napping. The goal of this study was to determine whether people who endorse napping at least once a week (nap+) show differences in nap outcomes, including nap-dependent memory consolidation, compared with people who rarely or never nap (nap−). Additionally, we tested whether four weeks of nap practice or restriction would change sleep and performance profiles. Using a perceptual learning task, we found that napping enhanced performance to a greater degree in nap+ compared with nap− individuals (at baseline). Additionally, performance change was associated with different electrophysiological sleep features in each group. In the nap+ group, spindle density was positively correlated with performance improvement, an effect specific to spindles in the hemisphere contralateral to the trained visual field. In the nap− group, slow oscillatory power (0.5–1 Hz) was correlated with performance. Surprisingly, no changes to performance or brain activity during sleep emerged after four weeks of nap practice or restriction. These results suggest that individual differences may impact the potential benefits of napping on performance and the ability to become a better napper.

     
    more » « less