skip to main content


Search for: All records

Creators/Authors contains: "Meena, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Speaker tracking in spontaneous naturalistic data continues to be a major research challenge, especially for short turn-taking communications. The NASA Apollo-11 space mission brought astronauts to the moon and back, where team based voice communications were captured. Building robust speaker classification models for this corpus has significant challenges due to variability of speaker turns, imbalanced speaker classes, and time-varying background noise/distortions. This study proposes a novel approach for speaker classification and tracking, utilizing a graph attention network framework that builds upon pretrained speaker embeddings. The model’s robustness is evaluated on a number of speakers (10-140), achieving classification accuracy of 90.78% for 10 speakers, and 79.86% for 140 speakers. Furthermore, a secondary investigation focused on tracking speakers-of-interest(SoI) during mission critical phases, essentially serves as a lasting tribute to the 'Heroes Behind the Heroes'. 
    more » « less
    Free, publicly-accessible full text available August 20, 2024
  2. McCartney, Melissa (Ed.)
    Education about scientific publishing and manuscript peer review is not universally provided in undergraduate science courses. Since peer review is integral to the scientific process and central to the identity of a scientist, we envision a paradigm shift where teaching peer review becomes integral to undergraduate science education. 
    more » « less
    Free, publicly-accessible full text available August 22, 2024
  3. Apollo 11 was the first manned space mission to successfully bring astronauts to the Moon and return them safely. As part of NASA’s goal in assessing team and mission success, all voice communications within mission control, astronauts, and support staff were captured using a multichannel analog system, which until recently had never been made available. More than 400 personnel served as mission specialists/support who communicated across 30 audio loops, resulting in 9,000+ h of data. It is essential to identify each speaker’s role during Apollo and analyze group communication to achieve a common goal. Manual annotation is costly, so this makes it necessary to determine robust speaker identification and tracking methods. In this study, a subset of 100hr derived from the collective 9,000hr of the Fearless Steps (FSteps) Apollo 11 audio data were investigated, corresponding to three critical mission phases: liftoff, lunar landing, and lunar walk. A speaker recognition assessment is performed on 140 speakers from a collective set of 183 NASA mission specialists who participated, based on sufficient training data obtained from 5 (out of 30) mission channels. We observe that SincNet performs the best in terms of accuracy and F score achieving 78.6% accuracy. Speaker models trained on specific phases are also compared with each other to determine if stress, g-force/atmospheric pressure, acoustic environments, etc., impact the robustness of the models. Higher performance was obtained using i-vector and x-vector systems for phases with limited data, such as liftoff and lunar walk. When provided with a sufficient amount of data (lunar landing phase), SincNet was shown to perform the best. This represents one of the first investigations on speaker recognition for massively large team-based communications involving naturalistic communication data. In addition, we use the concept of “Where’s Waldo?” to identify key speakers of interest (SOIs) and track them over the complete FSteps audio corpus. This additional task provides an opportunity for the research community to transition the FSteps collection as an educational resource while also serving as a tribute to the “heroes behind the heroes of Apollo.” 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. Zhou, Jianhong (Ed.)
    There is an alarming shortage of qualified STEM teachers in American PK-12 schools. The COVID-19 pandemic may exacerbate this crisis and consequently affect who participates in future STEM innovation. At three points during the pandemic, we surveyed early career teachers who were supported by the National Science Foundation as they began teaching in high-needs school districts. Teachers who felt connected to their professional and academic communities reported intentions to remain in the profession, while those who felt isolated reported intentions of leaving. It is critical for STEM academics to maintain professional relationships with graduates who pursue STEM teaching professions after graduation. 
    more » « less
  5. Abstract

    Scientists in higher education institutions around the globe recognize the importance of engaging with public stakeholders to share their enthusiasm, explain their science, and encourage primary and secondary students to enter the sciences. However, without direct consideration of students’ and teachers’ perspectives and interests, scientists may design activities around their own goals, limiting the impact on school stakeholders (i.e., students, teachers, paraprofessional staff, students’ parents, and other caregivers). We drew from natural and social science research to describe how expanding the conception of place beyond the biophysical can help engage school stakeholders in meaningful ways. We describe the multidimensional PLACE framework that we developed to integrate perspectives, knowledge, and values of all stakeholders in engagement programming. The framework is organized around topics that stakeholders should discuss early on to ensure successful partnerships. We recommend that scientists identify and use pedagogy that is inclusive; language framed around dialogic communication methods; aims and motivations centered on engagement; cultural funds of knowledge of place (i.e., disciplinary, personal, or experiential knowledge); and evaluation of engagement based on meaningful metrics. Two case studies are presented to illustrate how the PLACE framework components, when addressed, can lead to robust, successful partnerships between scientists and schools.

     
    more » « less
  6. Abstract

    As the pandemic began to disrupt school systems in March 2020, teachers were expected to quickly modify their instructional approaches. We recruited science, technology, engineering, and mathematics teachers who were recipients of National Science Foundation scholarships based on their high‐quality academic record and commitment to working in high‐needs school districts to participate in a longitudinal survey study. Participants (n = 153) graduated from universities or colleges in the Mountain West or western region of the Midwest. Through a series of three surveys administered throughout 2020 to all participants and follow‐up focus group interviews with a subset (n = 42) in early 2021, we examined participants' perceptions and beliefs about the educational system's response to COVID‐19. Participants perceived that the continuation of instructional delivery was the highest priority and that their professional needs were the lowest priority. Most participants believed the actions taken by school districts and schools to be negative or neutral. Participants were categorized by years of experience (preservice 0, novice 1–3, early career 4–5, and master 6+) to compare their perceptions of success and intentions to continue teaching. Participants perceived that their level of success increased with years of professional experience prior to the pandemic, but all participants reported feeling less successful during the pandemic. Despite participants' negative beliefs about the school response and perceived low levels of success, they intended to remain in the classroom short‐term but not necessarily long term. We recommend that teacher educators and administrators (1) help teachers develop their personal knowledge and skills for use in the classroom, especially considering the national shortage of science (and STEM, broadly) teachers in high‐needs districts and (2) develop proactive plans for responding to unexpected crises on large scales, as well as those limited to a particular region.

     
    more » « less