skip to main content


Search for: All records

Creators/Authors contains: "Meko, D. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Regional and local climate change depends on continentality, orography, and human activities. In particular, local climate modification by water reservoirs can reach far from shore and downstream. Among the possible ecological consequences are shifts in plant performance. Tree-ring width of affected trees can potentially be used as proxies for reservoir impact. Correlation analysis andt-tests were applied to climatic data and tree-ring chronologies ofPinus sylvestrisL. andLarix sibiricaLedeb. from moisture-deficit habitats in the intermontane Khakass-Minusinsk Depression, to assess modification of climate and tree growth by the Krasnoyarsk and Sayano-Shushenskoe Reservoirs on the Yenisei River. Abrupt significant cooling in May–August and warming in September-March occurred after the launch of the turbines in dams, more pronounced near the Sayano-Shushenskoe dam (up to – 0.5 °C in summer and to + 3.5 °C in winter) than near the Krasnoyarsk Reservoir headwaters (– 0.3 °C and + 1.4 °C). Significant lengthening of the warm season was also found for temperature thresholds 0–8 °C. Shifts of seasonality and intensity occurred in climatic responses of all tree-ring chronologies after development of water reservoirs. Patterns of these shifts, however, depended on species-specific sensitivity to climatic modification, distance from reservoirs, and physiographic regions. Mitigation of climate continentality and extremes by reservoirs appears to have offset possible negative effects of warming on tree growth.

     
    more » « less
  2. Abstract

    California’s water resources rely heavily on cool‐season (November–March) precipitation in the Sierra Nevada. Interannual variability is highly volatile and seasonal forecasting has little to no skill, making water management particularly challenging. Over 1902–2020, Sierra Nevada cool‐season precipitation totals exhibited significant 2.2‐ and 13–15‐year cycles, accounting for approximately 40% of total variability and perhaps signifying potential as seasonal forecasting tools. However, the underlying climate dynamics are not well understood and it is unclear whether these cycles are stable over the long term. We use tree rings to reconstruct Sierra Nevada cool‐season precipitation back to 1400. The reconstruction is skillful, accounting for 55%–74% of observed variability and capturing the 20th‐century 2.2‐ and 13–15‐year cycles. Prior to 1900, the reconstruction indicates no other century‐long periods of significant spectral power in the 2.2‐ or 13–15‐year bands. The reconstruction does indicate significant cyclicity over other extended periods of several decades or longer, however, with dominant periodicities in the ranges of 2.1–2.7 and 3.5–8 years. The late 1700s through 1800s exhibited the highest‐amplitude cycles in the reconstruction, with periodicities of 2.4 and 5.7–7.4 years. The reconstruction should serve to caution against extrapolating the observed 2.2‐ and 13–15‐year cycles to guide future expectations. On the other hand, observations and the reconstruction suggest that interannual variability of Sierra Nevada cool‐season precipitation is not a purely white noise process and research should aim to diagnose the dynamical drivers of extended periods of cyclicity in this critical natural resource.

     
    more » « less