skip to main content


Search for: All records

Creators/Authors contains: "Meng, Jin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. After successfully diversifying during the Paleocene, the descendants of the first wave of mammals that survived the end‐Cretaceous mass extinction waned throughout the Eocene. Competition with modern crown clades and intense climate fluctuations may have been part of the factors leading to the extinction of these archaic groups. Why these taxa went extinct has rarely been studied from the perspective of the nervous system. Here, we describe the first virtual endocasts for the archaic order Tillodontia. Three species from the middle Eocene of North America were analyzed: Trogosus hillsii, Trogosus grangeri, and Trogosus castoridens. We made morphological comparisons with the plaster endocast of another tillodont,Tillodon fodiens, as well as groups potentially related to Tillodontia: Pantodonta, Arctocyonidae, and Cimolesta. Trogosus shows very little inter‐specific variation with the only potential difference being related to the fusion of the optic canal and sphenorbital fissure. Many ancestral features are displayed by Trogosus, including an exposed midbrain, small neocortex, orbitotemporal canal ventral to rhinal fissure, and a broad circular fissure. Potential characteristics that could unite Tillodontia with Pantodonta, and Arctocyonidae are the posterior position of cranial nerve V3 exit in relation to the cerebrum and the low degree of development of the subarcuate fossa. The presence of large olfactory bulbs and a relatively small neocortex are consistent with a terrestrial lifestyle. A relatively small neocortex may have put Trogosus at risk when competing with artiodactyls for potentially similar resources and avoiding predation from archaic carnivorans, both of which are known to have had larger relative brain and neocortex sizes in the Eocene. These factors may have possibly exacerbated the extinction of Tillodontia, which showed highly specialized morphologies despite the increase in climate fluctuations throughout the Eocene, before disappearing during the middle Eocene. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  2. The end-Cretaceous extinction triggered the collapse of ecosystems and a drastic turnover of mammalian communities. During the Mesozoic, mammals were ecologically diverse, but less so than extant species. Modern ecological richness was established by the Eocene, but questions remain about the ecology of the first wave of mammals radiating after the extinction.Postcranial fossils are often used to determine locomotor behavior; however, the semicircular canals of theinner ear also represent a reliable proxy. These canals detect the angular acceleration of the head duringl ocomotion and transmit neuronal signals to the brain to allow stabilization of the eyes and head. Accordingly, vestibular sensitivity to rapid rotational head movements is higher in species with a larger canal radius of curvature and more orthogonal canals. We used high-resolution computed tomography scanning to obtain inner ear virtual endocasts for 30 specimens. We supplemented these with data from the literature to constructa database of 79 fossil from the Jurassic to the Eocene and 262 extant mammals. We compared data on canal morphology and another lifestyle proxy, the size of the petrosal lobules, which have a role in maintaining eyes’ movements and position. We find that Paleocene mammals exhibited a lower average and more constricted range of Agility Indices (AI), a new measure of canal radius size relative to body size, compared to Mesozoic, Eocene and extant taxa. Inthe early Paleocene, body mass and canal radius increased, but the former outpaced the latter leading to an AIdecline. Similarly, their petrosal lobules were relatively smaller on average compared to other temporal groups, which suggests less ability for fast movements. Additionally, Paleocene mammals had similar AIs to extant scansorial and terrestrial quadrupeds. In contrast, the lack of canal orthogonality change from the Mesozoic to the Paleocene indicates no trend toward lower vestibular sensitivity regardless of changes in body size. This result may reflect functional differences between canal orthogonality and radius size. Our results support previous work on tarsal morphology and locomotor behavior ancestral state reconstruction suggesting that ground dwelling mammals were more common than arboreal taxa during the Paleocene. Ultimately, this pattern may indicate that the collapse of forested environments immediately after extinction led to the preferential survivorship of more terrestrially adapted mammals. 
    more » « less
    Free, publicly-accessible full text available June 26, 2024
  3. The end-Cretaceous extinction triggered the collapse of ecosystems and a drastic turnover of mammalian communities. During the Mesozoic, mammals were ecologically diverse, but less so than extant species. Modern ecological richness was established by the Eocene, but questions remain about the ecology of the first wave of mammals radiating after the extinction.Postcranial fossils are often used to determine locomotor behavior; however, the semicircular canals of theinner ear also represent a reliable proxy. These canals detect the angular acceleration of the head duringl ocomotion and transmit neuronal signals to the brain to allow stabilization of the eyes and head. Accordingly, vestibular sensitivity to rapid rotational head movements is higher in species with a larger canal radius of curvature and more orthogonal canals. We used high-resolution computed tomography scanning to obtain inner ear virtual endocasts for 30 specimens. We supplemented these with data from the literature to constructa database of 79 fossil from the Jurassic to the Eocene and 262 extant mammals. We compared data on canal morphology and another lifestyle proxy, the size of the petrosal lobules, which have a role in maintaining eyes’ movements and position. We find that Paleocene mammals exhibited a lower average and more constricted range of Agility Indices (AI), a new measure of canal radius size relative to body size, compared to Mesozoic, Eocene and extant taxa. Inthe early Paleocene, body mass and canal radius increased, but the former outpaced the latter leading to an AIdecline. Similarly, their petrosal lobules were relatively smaller on average compared to other temporal groups, which suggests less ability for fast movements. Additionally, Paleocene mammals had similar AIs to extant scansorial and terrestrial quadrupeds. In contrast, the lack of canal orthogonality change from the Mesozoic to the Paleocene indicates no trend toward lower vestibular sensitivity regardless of changes in body size. This result may reflect functional differences between canal orthogonality and radius size. Our results support previous work on tarsal morphology and locomotor behavior ancestral state reconstruction suggesting that ground dwelling mammals were more common than arboreal taxa during the Paleocene. Ultimately, this pattern may indicate that the collapse of forested environments immediately after extinction led to the preferential survivorship of more terrestrially adapted mammals. 
    more » « less
  4. Placental mammals had a smaller brain-to-body-size ratio after the dinosaur extinction but later developed the largest vertebrate brains. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Thermal anisotropy/isotropy is one of the fundamental thermal transport properties of materials and plays a critical role in a wide range of practical applications. Manipulation of anisotropic to isotropic thermal transport or vice versa is in increasing demand. However, almost all the existing approaches for tuning anisotropy or isotropy focus on structure engineering or materials processing, which is time and cost consuming and irreversible, while little progress has been made with an intact, robust, and reversible method. Motivated by the inherent relationship between interatomic interaction mediated phonon transport and electronic charges, we comprehensively investigate the effect of external electric field on thermal transport in two-dimensional (2D) borophene by performing first-principles calculations along with the phonon Boltzmann transport equation. Under external electric field, the lattice thermal conductivity of borophene in both in-plane directions first increases significantly to peak values with the maximum augmentation factor of 2.82, and the intrinsic anisotropy (the ratio of thermal conductivity along two in-plane directions) is boosted to the highest value of 2.13. After that, thermal conductivities drop down steeply and anisotropy exhibits oscillating decay. With the electric field increasing to 0.4 V Å −1 , the thermal conductivity is dramatically suppressed to 1/40 of the original value at no electric field. More interestingly, the anisotropy of the thermal conductivity decreases to the minimum value of 1.25, showing almost isotropic thermal transport. Such abnormal anisotropic to isotropic thermal transport transition stems from the large enhancement and suppression of phonon lifetime at moderate and high strength of electric field, respectively, and acts as an amplifying or reducing factor to the thermal conductivity. We further explain the tunability of phonon lifetime of the dominant acoustic mode by an electron localization function. By comparing the electric field-modulated thermal conductivity of borophene with the dielectric constant, it is found that the screened potential resulting from the redistributed charge density leads to phonon renormalization and the modulation of phonon anharmonicity and anisotropy through electric field. Our study paves the way for robust tuning of anisotropy of phonon transport in materials by applying intact, robust, and reversible external electric field without altering their atomic structure and would have a significant impact on emerging applications, such as thermal management of nanoelectronics and thermoelectric energy conversion. 
    more » « less