skip to main content


Search for: All records

Creators/Authors contains: "Meyer, H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Neutron grating interferometry provides information on phase and small-angle scatter in addition to attenuation. Previously, phase grating moiré interferometers (PGMI) with two or three phase gratings have been developed. These phase-grating systems use the moiré far-field technique to avoid the need for high-aspect absorption gratings used in Talbot–Lau interferometers (TLI) that reduce the neutron flux reaching the detector. We first demonstrate, through theory and simulations, a novel phase grating interferometer system for cold neutrons that requires a single modulated phase grating (MPG) for phase-contrast imaging, as opposed to the two or three phase gratings in previously employed PGMI systems. The theory shows the dual modulation of MPG with a large period and a smaller carrier pitch P, resulting in large fringes at the detector. The theory was compared to the full Sommerfeld–Rayleigh diffraction integral simulator. Then, we proceeded to compare the MPG system to experiments in the literature that use a two-phase-grating-based PGMI with best-case visibility of around 39%. The simulations of the MPG system show improved visibility in comparison to that of the two-phase-grating-based PGMI. An MPG with a modulation period of 300 µm, the pitch of 2 µm, and grating heights with a phase modulation of (π,0, illuminated by a monochromatic beam produces visibility of 94.2% with a comparable source-to-detector distance (SDD) as the two-phase-grating-based PGMI. Phase sensitivity, another important performance metric of the grating interferometer, was compared to values available in the literature, viz. the conventional TLI with the phase sensitivity of 4.5 × 103 for an SDD of 3.5 m and a beam wavelength of 0.44 nm. For a range of modulation periods, the MPG system provides comparable or greater theoretical maximum phase sensitivity of 4.1 × 103 to 10.0 × 103 for SDDs of up to 3.5 m. This proposed MPG system appears capable of providing high-performance PGMI that obviates the need for the alignment of two phase gratings.

     
    more » « less
  2. Free, publicly-accessible full text available June 1, 2024
  3. Abstract The Pandora Software Development Kit and algorithm libraries provide pattern-recognition logic essential to the reconstruction of particle interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at ProtoDUNE-SP, a prototype for the Deep Underground Neutrino Experiment far detector. ProtoDUNE-SP, located at CERN, is exposed to a charged-particle test beam. This paper gives an overview of the Pandora reconstruction algorithms and how they have been tailored for use at ProtoDUNE-SP. In complex events with numerous cosmic-ray and beam background particles, the simulated reconstruction and identification efficiency for triggered test-beam particles is above 80% for the majority of particle type and beam momentum combinations. Specifically, simulated 1 GeV/ c charged pions and protons are correctly reconstructed and identified with efficiencies of 86.1 $$\pm 0.6$$ ± 0.6 % and 84.1 $$\pm 0.6$$ ± 0.6 %, respectively. The efficiencies measured for test-beam data are shown to be within 5% of those predicted by the simulation. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. Free, publicly-accessible full text available June 1, 2024