skip to main content


Search for: All records

Creators/Authors contains: "Milan, S. E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Key Points Large dB / dt “spikes” in ground magnetometer data occur in three local time hotspots in the pre‐midnight, dawn, and pre‐noon sectors These are consistent with spikes produced by substorm onsets, omega bands, and the Kelvin‐Helmholtz instability, respectively Spike occurrence is controlled by solar activity, maximizing in the declining phase of the solar cycle, esp. solar cycle 23 
    more » « less
  2. We present a statistical analysis of the occurrence of bifurcations of the Region 2 (R2) Field-Aligned Current (FAC) region, observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Previously, these have been shown to occur as the polar cap contracts after substorm onset, the beginning of the growth phase. During this phase both the Region 1 (R1) and R2 currents move equatorwards as the polar cap expands. Following onset, the R1 FAC region contracts polewards but the R2 FAC continues to expand equatorwards before eventually fading. At the same time, a new R2 FAC develops equatorwards of the R1 FAC. We have proposed that the bifurcated FACs formed during substorms are associated with plasma injections from the magnetotail into the inner magnetosphere, and that they might be the FAC signature associated with Sub-Auroral Polarization Streams (SAPS). We investigate the seasonal dependence of the occurrence of bifurcations from 2010 to 2016, determining whether they occur predominantly at dawn or dusk. Region 2 Bifurcations (R2Bs) are observed most frequently in the summer hemisphere and at dusk, and we discuss the possible influence of ionospheric conductance. We also discuss a newly discovered UT dependence of the R2B occurrences between 2011 and 2014. This dependence is characterized by broad peaks in occurrence near 09 and 21 UT in both hemispheres. Reasons for such a preference in occurrence are explored. 
    more » « less
  3. Abstract

    The effects of a solar wind pressure pulse on the terrestrial magnetosphere have been observed in detail across multiple datasets. The communication of these effects into the magnetosphere is known as a positive geomagnetic sudden impulse (+SI), and are observed across latitudes and different phenomena to characterize the propagation of +SI effects through the magnetosphere. A superposition of Alfvén and compressional propagation modes are observed in magnetometer signatures, with the dominance of these signatures varying with latitude. For the first time, collocated lobe reconnection convection vortices and region 0 field aligned currents are observed preceding the +SI onset, and an enhancement of these signatures is observed as a result of +SI effects. Finally, cusp auroral emission is observed collocated with the convection and current signatures. For the first time, simultaneous observations across multiple phenomena are presented to confirm models of +SI propagation presented previously.

     
    more » « less
  4. Abstract

    We propose a mechanism for the formation of the horse‐collar auroral configuration during periods of strongly northward interplanetary magnetic field (IMF), invoking the action of dual‐lobe reconnection (DLR). Auroral observations are provided by the Imager for Magnetopause‐to‐Aurora Global Exploration (IMAGE) satellite and spacecraft of the Defense Meteorological Satellite Program (DMSP). We also use ionospheric flow measurements from DMSP and polar maps of field‐aligned currents (FACs) derived from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). Sunward convection is observed within the dark polar cap, with antisunward flows within the horse‐collar auroral region, together with the NBZ FAC distribution expected to be associated with DLR. We suggest that newly closed flux is transported antisunward and to dawn and dusk within the reverse lobe cell convection pattern associated with DLR, causing the polar cap to acquire a teardrop shape and weak auroras to form at high latitudes. Horse‐collar auroras are a common feature of the quiet magnetosphere, and this model provides a first understanding of their formation, resolving several outstanding questions regarding the nature of DLR and the magnetospheric structure and dynamics during northward IMF. The model can also provide insights into the trapping of solar wind plasma by the magnetosphere and the formation of a low‐latitude boundary layer and cold, dense plasma sheet. We speculate that prolonged DLR could lead to a fully closed magnetosphere, with the formation of horse‐collar auroras being an intermediate step.

     
    more » « less
  5. Abstract

    Super Dual Auroral Radar Network (SuperDARN) ionospheric convection maps are a powerful tool for the study of solar wind‐magnetosphere‐ionosphere interactions. SuperDARN data have high temporal (approximately minutes) and spatial (∼45 km) resolution, meaning that the convection can be mapped on fine time scales that show more detail than the large‐scale changes in the pattern. The Heppner‐Maynard boundary (HMB) defines the low‐latitude limit of the convection region, and its identification is an essential component of the standard SuperDARN convection mapping technique. However, the estimation of the latitude of this boundary is dependent on ionospheric scatter availability. Consequentially it is susceptible to nonphysical variations as areas of scatter in different latitude and local time regions appear and disappear, often due to changing propagation conditions. In this paper, the HMB is compared to an independent field‐aligned current data set from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). A linear trend is found between the HMB and the boundary between the AMPERE Region 1 and Region 2 field‐aligned currents in the Northern Hemisphere, at both solar minimum and solar maximum. The use of this trend and the AMPERE current data set to predict the latitude position of the HMB is found to improve the interpretation of the SuperDARN measurements in convection mapping.

     
    more » « less