skip to main content


Search for: All records

Creators/Authors contains: "Milla, M. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We describe a mode for two-dimensional UHF (445 MHz) radar observations ofF-region irregularities using the 14-panel version of the advanced modular incoherent scatter radar (AMISR-14). We also present and discuss examples of observations made by this mode. AMISR-14 is installed at the Jicamarca Radio Observatory (JRO, 11.95°S, 76.87°W, ~ 0.5° dip latitude) in Peru and, therefore, allows studies of ionospheric irregularities at the magnetic equator. The new mode takes advantage of the electronic beam-steering capability of the system to scan the equatorialF-region in the east–west direction. Therefore, it produces two-dimensional views of the spatial distribution of sub-meter field-aligned density irregularities in the magnetic equatorial plane. The scans have a temporal resolution of 20 s and allow observations over a zonal distance of approximately 400 km at mainF-region heights. While the system has a lower angular and range resolution than interferometric in-beam VHF radar imaging observations available at Jicamarca, it allows a wider field-of-view than that allowed with the VHF system. Here, we describe the mode, and present and discuss examples of observations made with the system. We also discuss implications of these observations for studies of ESF at the JRO.

    Graphical abstract

     
    more » « less
  2. null (Ed.)
  3. Abstract

    We used reanalyzed Jicamarca radar measurements to study the response of equatorial ionospheric electrodynamics and spread F during the main phase of the large September 2017 geomagnetic storm. Our observations near dusk on 7 September show very large upward drifts followed by a large short‐lived downward drift perturbation that completely suppressed the lower F region plasma irregularities and severely decreased the backscattered power from the higher altitude spread F. We suggest that this large short‐lived westward electric field perturbation is most likely of magnetospheric origin and is due to a sudden and very strong magnetic field reconfiguration. Later in the early night period, data indicate large, mostly upward, drift perturbations generally consistent with standard undershielding and overshielding electric field effects, but with amplitudes significantly larger than expected. Our analysis suggests that occurrence of storm‐time substorms is one of the major factors causing the large nighttime westward and eastward electric field perturbations observed at Jicamarca near the storm main phase. Our analysis also suggests that magnetospheric substorms play far more important roles on the electrodynamics of the equatorial nighttime ionosphere than has generally been thought.

     
    more » « less
  4. Abstract

    Data from a network of high‐frequency (HF) beacons deployed in Peru are used to estimate the regional ionospheric electron density in a volume. Pseudorange, accumulated carrier phase, and signal power measurements for each of the 36 ray paths provided by the network at a 1 min cadence are incorporated in the estimates. Additional data from the Jicamarca incoherent scatter radar, the Jicamarca sounder, and GPS receivers can also be incorporated. The electron density model is estimated as the solution to a global optimization problem that uses ray tracing in the forward model. The electron density is parametrized in terms of B‐splines in the horizontal direction and generalized Chapman functions or related functions in the vertical. Variational sensitivity analysis has been added to the method to allow for the utilization of the signal power observable which gives additional information about the morphology of the bottomside F region as well as absorption including absorption in the D and E regions. The goal of the effort is to provide contextual information for improving numerical forecasts of plasma interchange instabilities in the postsunset F region ionosphere associated with equatorial spread F (ESF). Data from two ESF campaigns are presented. In one experiment, the HF data revealed the presence of a large‐scale bottomside deformation that seems to have led to instability under otherwise inauspicious conditions. In another experiment, gradual variations in HF signal power were found to be related to the varying shape of the bottomside F layer.

     
    more » « less
  5. Abstract

    Inverse methods involving compressive sensing are tested in the application of two‐dimensional aperture‐synthesis imaging of radar backscatter from field‐aligned plasma density irregularities in the ionosphere. We consider basis pursuit denoising, implemented with the fast iterative shrinkage thresholding algorithm, and orthogonal matching pursuit (OMP) with a wavelet basis in the evaluation. These methods are compared with two more conventional optimization methods rooted in entropy maximization (MaxENT) and adaptive beamforming (linearly constrained minimum variance or often “Capon's Method.”) Synthetic data corresponding to an extended ionospheric radar target are considered. We find that MaxENT outperforms the other methods in terms of its ability to recover imagery of an extended target with broad dynamic range. Fast iterative shrinkage thresholding algorithm performs reasonably well but does not reproduce the full dynamic range of the target. It is also the most computationally expensive of the methods tested. OMP is very fast computationally but prone to a high degree of clutter in this application. We also point out that the formulation of MaxENT used here is very similar to OMP in some respects, the difference being that the former reconstructs the logarithm of the image rather than the image itself from basis vectors extracted from the observation matrix. MaxENT could in that regard be considered a form of compressive sensing.

     
    more » « less
  6. Abstract

    We present the results of an analysis of long‐term measurements of ionosphericFregionE × Bplasma drifts in the American/Peruvian sector. The analysis used observations made between 1986 and 2017 by the incoherent scatter radar of the Jicamarca Radio Observatory. Unlike previous studies, we analyzed both vertical and zonal components of the plasma drifts to derive the geomagnetically quiet time climatological variation of the drifts as a function of height and local time. We determine the average behavior of the height profiles of the drifts for different seasons and distinct solar flux conditions. Our results show good agreement with previous height‐averaged climatological results of vertical and zonal plasma drifts, despite that they are obtained from different sets of measurements. More importantly, our results quantify average height variations in the drifts. The results show, for example, the solar flux control over the height variation of the vertical drifts. The results also show the weak dependence of the daytime zonal drift profiles on solar and seasonal variations. We quantify the effects of seasonal and solar flux variations on the morphology of the vertical shear in the zonal plasma drifts associated with the evening plasma vortex. Assuming interchangeability between local time and longitude, we tested the curl‐free condition for theFregion electric fields with very good results for all seasons and solar flux conditions. We envision the use of our results to aid numerical modeling of ionospheric electrodynamics and structuring and to assist with the interpretation of satellite observations of low‐latitude plasma drifts.

     
    more » « less
  7. Abstract

    The mesosphere and lower thermosphere (MLT) region is dominated globally by dynamics at various scales: planetary waves, tides, gravity waves, and stratified turbulence. The latter two can coexist and be significant at horizontal scales less than 500 km, scales that are difficult to measure. This study presents a recently deployed multistatic specular meteor radar system, SIMONe Peru, which can be used to observe these scales. The radars are positioned at and around the Jicamarca Radio Observatory, which is located at the magnetic equator. Besides presenting preliminary results of typically reported large‐scale features, like the dominant diurnal tide at low latitudes, we show results on selected days of spatially and temporally resolved winds obtained with two methods based on: (a) estimation of mean wind and their gradients (gradient method), and (b) an inverse theory with Tikhonov regularization (regularized wind field inversion method). The gradient method allows improved MLT vertical velocities and, for the first time, low‐latitude wind field parameters such as horizontal divergence and relative vorticity. The regularized wind field inversion method allows the estimation of spatial structure within the observed area and has the potential to outperform the gradient method, in particular when more detections are available or when fine adaptive tuning of the regularization factor is done. SIMONe Peru adds important information at low latitudes to currently scarce MLT continuous observing capabilities. Results contribute to studies of the MLT dynamics at different scales inherently connected to lower atmospheric forcing and E‐region dynamo related ionospheric variability.

     
    more » « less