skip to main content


Search for: All records

Creators/Authors contains: "Miller, Jonah"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Magnetohydrodynamic turbulence drives the central engine of post-merger remnants, potentially powering both a nucleosynthetically active disk wind and the relativistic jet behind a short gamma-ray burst. We explore the impact of the magnetic field on this engine by simulating three post-merger black hole accretion disks using general relativistic magnetohydrodynamics with Monte Carlo neutrino transport, in each case varying the initial magnetic field strength. We find increasing ejecta masses associated with increasing magnetic field strength. We find that a fairly robust mainr-process pattern is produced in all three cases, scaled by the ejected mass. Changing the initial magnetic field strength has a considerable effect on the geometry of the outflow and hints at complex central engine dynamics influencing lanthanide outflows. We find that actinide production is especially sensitive to magnetic field strength, with the overall actinide mass fraction calculated at 1 Gyr post-merger increasing by more than a factor of 6 with a tenfold increase in magnetic field strength. This hints at a possible connection to the variability in actinide enhancements exhibited by metal-poor,r-process-enhanced stars.

     
    more » « less
  2. Abstract

    We simulate a black hole accretion disk system with full-transport general relativistic neutrino radiation magnetohydrodynamics for 1.2 s. This system is likely to form after the merger of two compact objects and is thought to be a robust site ofr-process nucleosynthesis. We consider the case of a black hole accretion disk arising from the merger of two neutron stars. Our simulation time coincides with the nucleosynthesis timescale of ther-process (∼1 s). Because these simulations are time-consuming, it is common practice to run for a “short” duration of approximately 0.1–0.3 s. We analyze the nucleosynthetic outflow from this system and compare the results of stopping at 0.12 and 1.2 s. We find that the addition of mass ejected in the longer simulation as well as more favorable thermodynamic conditions from emergent viscous ejecta greatly impacts the nucleosynthetic outcome. We quantify the error in nucleosynthetic outcomes between short and long cuts.

     
    more » « less
  3. Abstract

    The electromagnetic emission from the nonrelativistic ejecta launched in neutron star mergers (either dynamically or through a disk wind) has the potential to probe both the total mass and composition of this ejecta. These observations are crucial in understanding the role of these mergers in the production ofr-process elements in the Universe. However, many properties of the ejecta can alter the light curves and we must both identify which properties play a role in shaping this emission and understand the effects these properties have on the emission before we can use observations to place strong constraints on the amount ofr-process elements produced in the merger. This paper focuses on understanding the effect of the velocity distribution (amount of mass moving at different velocities) for lanthanide-rich ejecta on the light curves and spectra. The simulations use distributions guided by recent calculations of disk outflows and compare the velocity-distribution effects to those of ejecta mass, velocity, and composition. Our comparisons show that uncertainties in the velocity distribution can lead to a factor of 2–4 uncertainties in the inferred ejecta mass based on peak infrared luminosities. We also show that early-time UV or optical observations may be able to constrain the velocity distribution, reducing the uncertainty in the ejecta mass.

     
    more » « less
  4. Abstract

    Understanding how matter behaves at the highest densities and temperatures is a major open problem in both nuclear physics and relativistic astrophysics. Our understanding of such behavior is often encapsulated in the so-called high-temperature nuclear equation of state (EOS), which influences compact binary mergers, core-collapse supernovae, and other phenomena. Our focus is on the type (either black hole or neutron star) and mass of the remnant of the core collapse of a massive star. For each six candidates of equations of state, we use a very large suite of spherically symmetric supernova models to generate a sample of synthetic populations of such remnants. We then compare these synthetic populations to the observed remnant population. Our study provides a novel constraint on the high-temperature nuclear EOS and describes which EOS candidates are more or less favored by an information-theoretic metric.

     
    more » « less
  5. Abstract

    The detailed observations of GW170817 proved for the first time directly that neutron star mergers are a major production site of heavy elements. The observations could be fit by a number of simulations that qualitatively agree, but can quantitatively differ (e.g., in total r-process mass) by an order of magnitude. We categorize kilonova ejecta into several typical morphologies motivated by numerical simulations, and apply a radiative transfer Monte Carlo code to study how the geometric distribution of the ejecta shapes the emitted radiation. We find major impacts on both spectra and light curves. The peak bolometric luminosity can vary by two orders of magnitude and the timing of its peak by a factor of five. These findings provide the crucial implication that the ejecta masses inferred from observations around the peak brightness are uncertain by at least an order of magnitude. Mixed two-component models with lanthanide-rich ejecta are particularly sensitive to geometric distribution. A subset of mixed models shows very strong viewing angle dependence due to lanthanide “curtaining,” which persists even if the relative mass of lanthanide-rich component is small. The angular dependence is weak in the rest of our models, but different geometric combinations of the two components lead to a highly diverse set of light curves. We identify geometry-dependent P Cygni features in late spectra that directly map out strong lines in the simulated opacity of neodymium, which can help to constrain the ejecta geometry and to directly probe the r-process abundances.

     
    more » « less