skip to main content


Search for: All records

Creators/Authors contains: "Mills, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gendered differences in academic confidence and self-efficacy between men and women are well-documented. In STEM fields and specifically in engineering, such differences have important consequences in that students low on these constructs are often more prone to leave their degree programs. While this evidence base is fairly established, less is known about the extent to which men and women show differences in confidence of team success, or collective efficacy, which may also be consequential in decisions to join and persist in design team experiences, or even to stay in or leave an engineering major, especially for first-year students. In this analysis, we quantitatively investigated gendered differences in confidence of team success and collective efficacy among first-year engineering students working on semester-long design projects in stable teams. Using a software tool built to support equitable teamwork, survey data on team confidence and collective efficacy was collected for these engineering students as well as for students in other courses for the sake of comparison. Three hierarchical linear models were fit to the data from 1,806 students across 31 unique course/term combinations. The results were mixed. In two of these analyses, we identified significant interactions between gender and team confidence. Specifically, men generally reported higher team confidence scores than women throughout the term with women eventually catching up, and team confidence ratings increased for men but not women following a lesson on imposter syndrome. No gendered differences were observed with respect to a collective efficacy scale administered near the middle and end of the term, however. In all cases, the results were consistent across course type (engineering, business, and others). 
    more » « less
  2. This work-in-progress paper reports on the assessment of an intervention on team communication and decision making processes to see whether such an intervention is related to improvement in the rating of equity of idea contributions. A hierarchical linear model was fit to teamwork data from 3,721 students in 40 courses. We find that students’ reports of equitable idea sharing are actually lower after the intervention than before; we hypothesize that the decreased rating might reflect increased student awareness of inequities rather than a true decrease in equitable idea sharing. This pattern held for most gender and racial groups, with the notable exception of non-binary students, who instead reported greater idea equity post-intervention, though we note the small sample size for this group. Finally, we find that decreases in reported idea sharing were largest when students reported the intervention was “highly relevant” to their team yet “not very helpful”. 
    more » « less
  3. Abstract

    The Community Earth System Model Version 2 (CESM2) has an equilibrium climate sensitivity (ECS) of 5.3 K. ECS is an emergent property of both climate feedbacks and aerosol forcing. The increase in ECS over the previous version (CESM1) is the result of cloud feedbacks. Interim versions of CESM2 had a land model that damped ECS. Part of the ECS change results from evolving the model configuration to reproduce the long‐term trend of global and regional surface temperature over the twentieth century in response to climate forcings. Changes made to reduce sensitivity to aerosols also impacted cloud feedbacks, which significantly influence ECS. CESM2 simulations compare very well to observations of present climate. It is critical to understand whether the high ECS, outside the best estimate range of 1.5–4.5 K, is plausible.

     
    more » « less
  4. Abstract

    Geoengineering methods could potentially offset aspects of greenhouse gas‐driven climate change. However, before embarking on any such strategy, a comprehensive understanding of its impacts must be obtained. Here, a 20‐member ensemble of simulations with the Community Earth System Model with the Whole Atmosphere Community Climate Model as its atmospheric component is used to investigate the projected hydroclimate changes that occur when greenhouse gas‐driven warming, under a high emissions scenario, is offset with stratospheric aerosol geoengineering. Notable features of the late 21st century hydroclimate response, relative to present day, include a reduction in precipitation in the Indian summer monsoon, over much of Africa, Amazonia and southern Chile and a wintertime precipitation reduction over the Mediterranean. Over most of these regions, the soil desiccation that occurs with global warming is, however, largely offset by the geoengineering. A notable exception is India, where soil desiccation and an approximate doubling of the likelihood of monsoon failures occurs. The role of stratospheric heating in the simulated hydroclimate change is determined through additional experiments where the aerosol‐induced stratospheric heating is imposed as a temperature tendency, within the same model, under present day conditions. Stratospheric heating is found to play a key role in many aspects of projected hydroclimate change, resulting in a general wet‐get‐drier, dry‐get‐wetter pattern in the tropics and extratropical precipitation changes through midlatitude circulation shifts. While a rather extreme geoengineering scenario has been considered, many, but not all, of the precipitation features scale linearly with the offset global warming.

     
    more » « less
  5. Abstract

    As the physical environment of the Arctic Ocean shifts seasonally from ice‐covered to open water, the limiting resource for phytoplankton growth shifts from light to nutrients. To understand the phytoplankton photophysiological responses to these environmental changes, we evaluated photoacclimation strategies of phytoplankton during the low‐light, high‐nutrient, ice‐covered spring and the high‐light, low‐nutrient, ice‐free summer. Field results show that phytoplankton effectively acclimated to reduced irradiance beneath the sea ice by maximizing light absorption and photosynthetic capacity. In fact, exceptionally high maximum photosynthetic rates and efficiency observed during the spring demonstrate that abundant nutrients enable prebloom phytoplankton to become “primed” for increases in irradiance. This ability to quickly exploit increasing irradiance can help explain the ability of phytoplankton to generate massive blooms beneath sea ice. In comparison, phytoplankton growth and photosynthetic rates are reduced postbloom due to severe nutrient limitation. These results advance our knowledge of photoacclimation by polar phytoplankton in extreme environmental conditions and indicate how phytoplankton may acclimate to future changes in light and nutrient resources under continued climate change.

     
    more » « less
  6. Abstract

    An overview of the Community Earth System Model Version 2 (CESM2) is provided, including a discussion of the challenges encountered during its development and how they were addressed. In addition, an evaluation of a pair of CESM2 long preindustrial control and historical ensemble simulations is presented. These simulations were performed using the nominal 1° horizontal resolution configuration of the coupled model with both the “low‐top” (40 km, with limited chemistry) and “high‐top” (130 km, with comprehensive chemistry) versions of the atmospheric component. CESM2 contains many substantial science and infrastructure improvements and new capabilities since its previous major release, CESM1, resulting in improved historical simulations in comparison to CESM1 and available observations. These include major reductions in low‐latitude precipitation and shortwave cloud forcing biases; better representation of the Madden‐Julian Oscillation; better El Niño‐Southern Oscillation‐related teleconnections; and a global land carbon accumulation trend that agrees well with observationally based estimates. Most tropospheric and surface features of the low‐ and high‐top simulations are very similar to each other, so these improvements are present in both configurations. CESM2 has an equilibrium climate sensitivity of 5.1–5.3 °C, larger than in CESM1, primarily due to a combination of relatively small changes to cloud microphysics and boundary layer parameters. In contrast, CESM2's transient climate response of 1.9–2.0 °C is comparable to that of CESM1. The model outputs from these and many other simulations are available to the research community, and they represent CESM2's contributions to the Coupled Model Intercomparison Project Phase 6.

     
    more » « less