skip to main content


Search for: All records

Creators/Authors contains: "Mitchell, Nate A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract. Landscape morphology reflects drivers such as tectonicsand climate but is also modulated by underlying rock properties. Whilegeomorphologists may attempt to quantify the influence of rock strengththrough direct comparisons of landscape morphology and rock strengthmetrics, recent work has shown that the contact migration resulting from the presence of mixed lithologies may hinder such an approach. Indeed, this work counterintuitively suggests that channel slopes within weaker units can sometimes be higher than channel slopes within stronger units. Here, we expand upon previous work with 1-D stream power numerical models in which we have created a system for quantifying contact migration over time. Although previous studies have developed theories for bedrock rivers incising through layered stratigraphy, we can now scrutinize these theories with contact migration rates measured in our models. Our results show that previously developed theory is generally robust and that contact migration rates reflect the pattern of kinematic wave speed across the profile. Furthermore, we have developed and tested a new approach for estimating kinematic wave speeds. This approach utilizes channel steepness, a known base-level fall rate, and contact dips. Importantly, we demonstrate how this new approach can be combined with previous work to estimate erodibility values. We demonstrate this approach by accurately estimating the erodibility values used in our numerical models. After this demonstration, we use our approach to estimate erodibility values for a stream near Hanksville, UT. Because we show in our numerical models that one can estimate the erodibility of the unit with lower steepness, the erodibilities we estimate for this stream in Utah are likely representative of mudstone and/or siltstone. The methods we have developed can be applied to streams with temporally constant base-level fall, opening new avenues of research within the field of geomorphology. 
    more » « less
  2. Abstract

    Landscape evolution is driven by factors like tectonics and climate, and unraveling such factors can reveal the history recorded in landscape morphology. The northern U.S. Cordillera features many potential drivers, such as the Yellowstone plume, the extrusion of a large igneous province, and the drainage of large lakes. Among this complex geologic history, the drivers of transient incision in the Clearwater and Salmon watersheds of central Idaho are not well understood. To constrain the pattern of regional incision, we analyze the morphologies of 80 individual tributaries underlain by single lithologies. From north to south across our study area, knickpoint elevations increase from about 800 to 2,200 m, and incision depths increase from about 300 to 1,200 m. We use both numerical and analytical models to demonstrate that such a gradient could represent spatial variations in rock uplift. These findings suggest that transience is driven by a spatially variable increase in rock uplift that has disrupted a low‐relief paleolandscape, and the high steepness values of main drainages suggest that high rock‐uplift rates are still maintained to the present. Changes in rock uplift may be related to interactions between the Yellowstone plume and the lithosphere, although base level fall from the drainage of the Lake Idaho down the proto‐Snake River may be superimposed over these patterns in rock uplift. We show that careful, quantitative analyses of river profiles in geologically complex regions can differentiate between the influences of rock uplift and far‐field base level changes.

     
    more » « less
  3. Abstract

    Intense precipitation or seismic events can generate clustered mass movement processes across a landscape. These rare events have significant impacts on the landscape, however, the rarity of such events leads to uncertainty in how they impact the entire geomorphic system over a range of timescales. Taiwan is steep, tectonically active, and prone to landslide and debris flows, especially when exposed to heavy rainfall events. Typhoon Morakot made landfall in Taiwan in August of 2009, causing widespread landslides in southern Taiwan. The south to north trend in valley relief in southern Taiwan leads to spatial variability in landslide susceptibility providing an opportunity to infer the long‐term impact of such landslide events on channel morphology. We use pre‐ and post‐typhoon imagery to quantify the propagating impact of this event on channel width as the debris is routed through the landscape. The results show the importance of cascading hazards from landslides on landscape evolution based on patterns of channel width (both pre‐ and post‐typhoon) and hillslope gradients in 20 basins along strike in southern Taiwan. Prior to Typhoon Morakot, the river channels in the central part of the study area were about 3–10 times wider than the channels in the south. Following the typhoon, aggradation and widening was also a maximum in these central to northern basins where hillslope gradients and channel steepness is high, accentuating the pre‐typhoon pattern. The results further show that the narrowest channels are located where channel steepness is the lowest, an observation inconsistent with a detachment‐limited model for river evolution. We infer this pattern is indicative of a strong role of sediment supply, and associated landslide events, on long‐term channel evolution. These findings have implications across a range of spatial and temporal scales including understanding the cascade of hazards in steep landscapes and geomorphic interpretation of channel morphology. Copyright © 2018 John Wiley & Sons, Ltd.

     
    more » « less