skip to main content


Search for: All records

Creators/Authors contains: "Moore, Allen J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background The function of DNA methyltransferase genes of insects is a puzzle, because an association between gene expression and methylation is not universal for insects. If the genes normally involved in cytosine methylation are not influencing gene expression, what might be their role? We previously demonstrated that gametogenesis of Oncopeltus fasciatus is interrupted at meiosis following knockdown of DNA methyltransferase 1 ( Dnmt1 ) and this is unrelated to changes in levels of cytosine methylation. Here, using transcriptomics, we tested the hypothesis that Dmnt1 is a part of the meiotic gene pathway. Testes, which almost exclusively contain gametes at varying stages of development, were sampled at 7 days and 14 days following knockdown of Dmnt1 using RNAi. Results Using microscopy, we found actively dividing spermatocysts were reduced at both timepoints. However, as with other studies, we saw Dnmt1 knockdown resulted in condensed nuclei after mitosis–meiosis transition, and then cellular arrest. We found limited support for a functional role for Dnmt1 in our predicted cell cycle and meiotic pathways. An examination of a priori Gene Ontology terms showed no enrichment for meiosis. We then used the full data set to reveal further candidate pathways influenced by Dnmt1 for further hypotheses. Very few genes were differentially expressed at 7 days, but nearly half of all transcribed genes were differentially expressed at 14 days. We found no strong candidate pathways for how Dnmt1 knockdown was achieving its effect through Gene Ontology term overrepresentation analysis. Conclusions We, therefore, suggest that Dmnt1 plays a role in chromosome dynamics based on our observations of condensed nuclei and cellular arrest with no specific molecular pathways disrupted. 
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Two popular approaches for modeling social evolution, evolutionary game theory and quantitative genetics, ask complementary questions but are rarely integrated. Game theory focuses on evolutionary outcomes, with models solving for evolutionarily stable equilibria, whereas quantitative genetics provides insight into evolutionary processes, with models predicting short-term responses to selection. Here we draw parallels between evolutionary game theory and interacting phenotypes theory, which is a quantitative genetic framework for understanding social evolution. First, we show how any evolutionary game may be translated into two quantitative genetic selection gradients, nonsocial and social selection, which may be used to predict evolutionary change from a single round of the game. We show that synergistic fitness effects may alter predicted selection gradients, causing changes in magnitude and sign as the population mean evolves. Second, we show how evolutionary games involving plastic behavioral responses to partners can be modeled using indirect genetic effects, which describe how trait expression changes in response to genes in the social environment. We demonstrate that repeated social interactions in models of reciprocity generate indirect effects and conversely, that estimates of parameters from indirect genetic effect models may be used to predict the evolution of reciprocity. We argue that a pluralistic view incorporating both theoretical approaches will benefit empiricists and theorists studying social evolution. We advocate the measurement of social selection and indirect genetic effects in natural populations to test the predictions from game theory and, in turn, the use of game theory models to aid in the interpretation of quantitative genetic estimates.

     
    more » « less
  3. Abstract

    Wondrously elaborate weapons and displays that appear to be counter to ecological optima are widespread features of male contests for mates across the animal kingdom. To understand how such diverse traits evolve, here we develop a quantitative genetic model of sexual selection for a male signaling trait that mediates aggression in male‐male contests and show that an honest indicator of aggression can generate selection on itself by altering the social environment. This can cause selection to accelerate as the trait is elaborated, leading to runaway evolution. Thus, an evolving source of selection provided by the social environment is the fundamental unifying feature of runaway sexual selection driven by either male‐male competition or female mate choice. However, a key difference is that runaway driven by male‐male competition requires signal honesty. Our model identifies simple conditions that provide clear, testable predictions for empirical studies using standard quantitative genetic methods.

     
    more » « less
  4. Abstract

    Understanding the genetic influences of traits of nonmodel organisms is crucial to understanding how novel traits arise. Do new traits require new genes or are old genes repurposed? How predictable is this process? Here, we examine this question for gene expression influencing parenting behavior in a beetle,Nicrophorus vespilloides. Parental care, produced from many individual behaviors, should be influenced by changes of expression of multiple genes, and one suggestion is that the genes can be predicted based on knowledge of behavior expected to be precursors to parental care, such as aggression, resource defense, and mating on a resource. Thus, testing gene expression during parental care allows us to test expectations of this “precursor hypothesis” for multiple genes and traits. We tested for changes of the expression of serotonin, octopamine/tyramine, and dopamine receptors, as well as one glutamate receptor, predicting that these gene families would be differentially expressed during social interactions with offspring and associated resource defense. We found that serotonin receptors were strongly associated with social and aggression behavioral transitions. Octopamine receptors produced a complex picture of gene expression over a reproductive cycle. Dopamine was not associated with the behavioral transitions sampled here, while the glutamate receptor was most consistent with a behavioral change of resource defense/aggression. Our results generate new hypotheses, refine candidate lists for further studies, and inform the genetic mechanisms that are co‐opted during the evolution of parent–offspring interactions, a likely evolutionary path for many lineages that become fully social. The precursor hypothesis, while not perfect, does provide a starting point for identifying candidate genes.

     
    more » « less
  5. 1. Burying beetles (Nicrophorusspp.) provide an excellent model system to test predictions about the relationships between environment, life‐history and behaviour. All species in the genus display similar natural histories, breeding on vertebrate carcasses and providing parental care to developing offspring. However, variations in other aspects of species' ecologies provide a rich framework to examine the evolution of parental behaviours and other traits.

    2. One little‐studied species,N. sayi, breeds in substantially colder temperatures than its congeners, creating a potentially harsh environment for offspring. Here, we examined the timing of reproductive and developmental events in this species, and also investigated the effects of removing parents on offspring performance.

    3. We find that development is not only extremely slow in this species, but it is also delayed even in comparison to other burying beetles reared at similar temperatures. However, the presence of parents reduces the time that offspring take to leave the carcass. This decrease in development time does not appear to result in a trade‐off with mortality or body size.

    4. From these results, we suggest that very slow development may be advantageous when living in a particularly cold environment. Additionally, one role of extended parental care may be to assist offspring in dealing with these harsh conditions, and to mitigate the potentially negative consequences of adopting such a slow life‐history strategy.

     
    more » « less