skip to main content


Search for: All records

Creators/Authors contains: "Mori, Warren B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Laser wakefield accelerators (LWFAs) have electric fields that are orders of magnitude larger than those of conventional accelerators, promising an attractive, small-scale alternative for next-generation light sources and lepton colliders. The maximum energy gain in a single-stage LWFA is limited by dephasing, which occurs when the trapped particles outrun the accelerating phase of the wakefield. Here, we demonstrate that a single space–time structured laser pulse can be used for ionization injection and electron acceleration over many dephasing lengths in the bubble regime. Simulations of a dephasingless laser wakefield accelerator driven by a 6.2-J laser pulse show 25 pC of injected charge accelerated over 20 dephasing lengths (1.3 cm) to a maximum energy of 2.1 GeV. The space–time structured laser pulse features an ultrashort, programmable-trajectory focus. Accelerating the focus, reducing the focused spot-size variation, and mitigating unwanted self-focusing stabilize the electron acceleration, which improves beam quality and leads to projected energy gains of 125 GeV in a single, sub-meter stage driven by a 500-J pulse.

     
    more » « less
  2. Abstract

    The past decade has seen tremendous progress in the production and utilization of vortex and vector laser pulses. Although both are considered as structured light beams, the vortex lasers have helical phase fronts and phase singularities, while the vector lasers have spatially variable polarization states and polarization singularities. In contrast to the vortex pulses that carry orbital angular momentum (OAM), the vector laser pulses have a complex spin angular momentum (SAM) and OAM coupling. Despite many potential applications enabled by such pulses, the generation of high-power/-intensity vortex and vector beams remains challenging. Here, we demonstrate using theory and three-dimensional simulations that the strongly-coupled stimulated Brillouin scattering (SC-SBS) process in plasmas can be used as a promising amplification technique with up to 65% energy transfer efficiency from the pump beam to the seed beam for both vortex and vector pulses. We also show that SC-SBS is strongly polarization-dependent in plasmas, enabling an all-optical polarization control of the amplified seed beam. Additionally, the interaction of such structured lasers with plasmas leads to various angular momentum couplings and decouplings that produce intense new light structures with controllable OAM and SAM. This scheme paves the way for novel optical devices such as plasma-based amplifiers and light field manipulators.

     
    more » « less
  3. In a laser wakefield accelerator (LWFA), an intense laser pulse excites a plasma wave that traps and accelerates electrons to relativistic energies. When the pulse overlaps the accelerated electrons, it can enhance the energy gain through direct laser acceleration (DLA) by resonantly driving the betatron oscillations of the electrons in the plasma wave. The traditional particle-in-cell (PIC) algorithm, although often the tool of choice to study DLA, contains inherent errors due to numerical dispersion and the time staggering of the electric and magnetic fields. Furthermore, conventional PIC implementations cannot reliably disentangle the fields of the plasma wave and laser pulse, which obscures interpretation of the dominant acceleration mechanism. Here, a customized field solver that reduces errors from both numerical dispersion and time staggering is used in conjunction with a field decomposition into azimuthal modes to perform PIC simulations of DLA in an LWFA. Comparisons with traditional PIC methods, model equations, and experimental data show improved accuracy with the customized solver and convergence with an order-of-magnitude fewer cells. The azimuthal-mode decomposition reveals that the most energetic electrons receive comparable energy from DLA and LWFA. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  4. Abstract The longitudinal coherence of X-ray free-electron lasers (XFELs) in the self-amplified spontaneous emission regime could be substantially improved if the high brightness electron beam could be pre-bunched on the radiated wavelength-scale. Here, we show that it is indeed possible to realize such current modulated electron beam at angstrom scale by exciting a nonlinear wake across a periodically modulated plasma-density downramp/plasma cathode. The density modulation turns on and off the injection of electrons in the wake while downramp provides a unique longitudinal mapping between the electrons’ initial injection positions and their final trapped positions inside the wake. The combined use of a downramp and periodic modulation of micrometers is shown to be able to produces a train of high peak current (17 kA) electron bunches with a modulation wavelength of 10’s of angstroms - orders of magnitude shorter than the plasma density modulation. The peak brightness of the nano-bunched beam can be O (10 21 A/m 2 /rad 2 ) orders of magnitude higher than current XFEL beams. Such prebunched, high brightness electron beams hold the promise for compact and lower cost XEFLs that can produce nanometer radiation with hundreds of GW power in a 10 s of centimeter long undulator. 
    more » « less
  5. The origin of the seed magnetic field that is amplified by the galactic dynamo is an open question in plasma astrophysics. Aside from primordial sources and the Biermann battery mechanism, plasma instabilities have also been proposed as a possible source of seed magnetic fields. Among them, thermal Weibel instability driven by temperature anisotropy has attracted broad interests due to its ubiquity in both laboratory and astrophysical plasmas. However, this instability has been challenging to measure in a stationary terrestrial plasma because of the difficulty in preparing such a velocity distribution. Here, we use picosecond laser ionization of hydrogen gas to initialize such an electron distribution function. We record the 2D evolution of the magnetic field associated with the Weibel instability by imaging the deflections of a relativistic electron beam with a picosecond temporal duration and show that the measured k -resolved growth rates of the instability validate kinetic theory. Concurrently, self-organization of microscopic plasma currents is observed to amplify the current modulation magnitude that converts up to ~1% of the plasma thermal energy into magnetic energy, thus supporting the notion that the magnetic field induced by the Weibel instability may be able to provide a seed for the galactic dynamo. 
    more » « less
  6. Abstract Due to the highly nonlinear nature of the beam-loading, it is currently not possible to analytically determine the beam parameters needed in a two-bunch plasma wakefield accelerator for maintaining a low energy spread. Therefore in this paper, by using the Broyden–Fletcher–Goldfarb–Shanno algorithm for the parameter scanning with the code QuickPIC and the polynomial regression together with k -fold cross-validation method, we obtain two fitting formulas for calculating the parameters of tri-Gaussian electron beams when minimizing the energy spread based on the beam-loading effect in a nonlinear plasma wakefield accelerator. One formula allows the optimization of the normalized charge per unit length of a trailing beam to achieve the minimal energy spread, i.e. the optimal beam-loading. The other one directly gives the transformer ratio when the trailing beam achieves the optimal beam-loading. A simple scaling law for charges of drive beams and trailing beams is obtained from the fitting formula, which indicates that the optimal beam-loading is always achieved for a given charge ratio of the two beams when the length and separation of two beams and the plasma density are fixed. The formulas can also help obtain the optimal plasma densities for the maximum accelerated charge and the maximum acceleration efficiency under the optimal beam-loading respectively. These two fitting formulas will significantly enhance the efficiency for designing and optimizing a two-bunch plasma wakefield acceleration stage. 
    more » « less