skip to main content


Search for: All records

Creators/Authors contains: "Moss, V. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    We present the serendipitous detection of the two main OH maser lines at 1667 and 1665 MHz associated with IRAS 10597+5926 at z ⊙  = 0.19612 in the untargeted Apertif Wide-area Extragalactic imaging Survey (AWES), and the subsequent measurement of the OH 1612 MHz satellite line in the same source. With a total OH luminosity of log( L / L ⊙ ) = 3.90 ± 0.03, IRAS 10597+5926 is the fourth brightest OH megamaser (OHM) known. We measure a lower limit for the 1667/1612 ratio of R 1612  > 45.9, which is the highest limiting ratio measured for the 1612 MHz OH satellite line to date. OH satellite line measurements provide a potentially valuable constraint by which to compare detailed models of OH maser pumping mechanisms. Optical imaging shows that the galaxy is likely a late-stage merger. Based on published infrared and far ultraviolet fluxes, we find that the galaxy is an ultra-luminous infrared galaxy (ULIRG) with log( L TIR / L ⊙ ) = 12.24 that is undergoing a starburst with an estimated star formation rate of 179 ± 40 M ⊙ yr −1 . These host galaxy properties are consistent with the physical conditions responsible for very bright OHM emission. Finally, we provide an update on the predicted number of OH masers that may be found in AWES and estimate the total number of OH masers that will be detected in each of the individual main and satellite OH 18 cm lines. 
    more » « less
  2. Abstract We present the most sensitive and detailed view of the neutral hydrogen ( ${\rm H\small I}$ ) emission associated with the Small Magellanic Cloud (SMC), through the combination of data from the Australian Square Kilometre Array Pathfinder (ASKAP) and Parkes (Murriyang), as part of the Galactic Australian Square Kilometre Array Pathfinder (GASKAP) pilot survey. These GASKAP-HI pilot observations, for the first time, reveal ${\rm H\small I}$ in the SMC on similar physical scales as other important tracers of the interstellar medium, such as molecular gas and dust. The resultant image cube possesses an rms noise level of 1.1 K ( $1.6\,\mathrm{mJy\ beam}^{-1}$ ) $\mathrm{per}\ 0.98\,\mathrm{km\ s}^{-1}$ spectral channel with an angular resolution of $30^{\prime\prime}$ ( ${\sim}10\,\mathrm{pc}$ ). We discuss the calibration scheme and the custom imaging pipeline that utilises a joint deconvolution approach, efficiently distributed across a computing cluster, to accurately recover the emission extending across the entire ${\sim}25\,\mathrm{deg}^2$ field-of-view. We provide an overview of the data products and characterise several aspects including the noise properties as a function of angular resolution and the represented spatial scales by deriving the global transfer function over the full spectral range. A preliminary spatial power spectrum analysis on individual spectral channels reveals that the power law nature of the density distribution extends down to scales of 10 pc. We highlight the scientific potential of these data by comparing the properties of an outflowing high-velocity cloud with previous ASKAP+Parkes ${\rm H\small I}$ test observations. 
    more » « less