skip to main content


Search for: All records

Creators/Authors contains: "Moster, Benjamin P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We analyse a suite of 29 high-resolution zoom-in cosmological hydrodynamic simulations of massive galaxies with stellar masses $M_{\rm star} \gt 10^{10.9} \, \mathrm{M}_\odot$, with the goal of better understanding merger activity among active galactic nuclei (AGN), AGN activity in merging systems, SMBH growth during mergers, and the role of gas content in triggering AGN. Using the radiative transfer code Powderday, we generate HST-WFC3 F160W mock observations of central galaxies at redshift 0.5 < z < 3; convolve each image with a CANDELS-like point spread function; stitch each image into a real CANDELS image; and identify mergers within the synthetic images using commonly adopted non-parametric statistics. We study the connection between mergers and AGN activity in both the simulations and synthetic images and find reasonable agreement with observations from CANDELS. We find that AGN activity is not primarily driven by major mergers (stellar mass ratio > 1:4) except in a select few cases of gas-rich mergers at low redshifts (0.5 < z < 0.9). We also find that major mergers do not significantly grow the central SMBHs, indicating major mergers do not sustain long-term accretion. Moreover, the most luminous AGN in our simulations (Lbol > 1045 erg s−1) are no more likely than inactive galaxies (Lbol < 1043 erg s−1) to be found in merging systems. We conclude that mergers are not the primary drivers of AGN activity in the simulated massive galaxies studied here.

     
    more » « less
  2. null (Ed.)
    ABSTRACT The James Webb Space Telescope (JWST) is expected to observe galaxies at z > 10 that are presently inaccessible. Here, we use a self-consistent empirical model, the universemachine, to generate mock galaxy catalogues and light-cones over the redshift range z = 0−15. These data include realistic galaxy properties (stellar masses, star formation rates, and UV luminosities), galaxy–halo relationships, and galaxy–galaxy clustering. Mock observables are also provided for different model parameters spanning observational uncertainties at z < 10. We predict that Cycle 1 JWST surveys will very likely detect galaxies with M* > 107 M⊙ and/or M1500 < −17 out to at least z ∼ 13.5. Number density uncertainties at z > 12 expand dramatically, so efforts to detect z > 12 galaxies will provide the most valuable constraints on galaxy formation models. The faint-end slopes of the stellar mass/luminosity functions at a given mass/luminosity threshold steepen as redshift increases. This is because observable galaxies are hosted by haloes in the exponentially falling regime of the halo mass function at high redshifts. Hence, these faint-end slopes are robustly predicted to become shallower below current observable limits (M* < 107 M⊙ or M1500 > −17). For reionization models, extrapolating luminosity functions with a constant faint-end slope from M1500 = −17 down to M1500 = −12 gives the most reasonable upper limit for the total UV luminosity and cosmic star formation rate up to z ∼ 12. We compare to three other empirical models and one semi-analytic model, showing that the range of predicted observables from our approach encompasses predictions from other techniques. Public catalogues and light-cones for common fields are available online. 
    more » « less