skip to main content


Search for: All records

Creators/Authors contains: "Motala, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract

    Metamaterials and metasurfaces operating in the visible and near‐infrared (NIR) offer a promising route towards next‐generation photodetectors and devices for solar energy harvesting. While numerous metamaterials and metasurfaces using metals and semiconductors have been demonstrated, semimetals‐based metasurfaces in the vis‐NIR range are notably missing. This work experimentally demonstrates a broadband metasurface superabsorber based on large area, semimetallic, van der Waals platinum diselenide (PtSe2) thin films in agreement with electromagnetic simulations. The results show that PtSe2is an ultrathin and scalable semimetal that concurrently possesses high index and high extinction across the vis‐NIR range. Consequently, the thin‐film PtSe2on a reflector separated by a dielectric spacer can absorb >85% for the unpatterned case and ≈97% for the optimized 2D metasurface in the 400–900 nm range making it one of the strongest and thinnest broadband perfect absorbers to date. The results present a scalable approach to photodetection and solar energy harvesting, demonstrating the practical utility of high index, high extinction semimetals for nanoscale optics.

     
    more » « less
  3. Abstract

    Chemical sensors based on solution‐processed 2D nanomaterials represent an extremely attractive approach toward scalable and low‐cost devices. Through the implementation of real‐time impedance spectroscopy and development of a three‐element circuit model, redox exfoliated MoS2nanoflakes demonstrate an ultrasensitive empirical detection limit of NO2gas at 1 ppb, with an extrapolated ultimate detection limit approaching 63 ppt. This sensor construct reveals a more than three orders of magnitude improvement from conventional direct current sensing approaches as the traditionally dominant interflake interactions are bypassed in favor of selectively extracting intraflake doping effects. This same approach allows for an all solution‐processed, flexible 2D sensor to be fabricated on a polyimide substrate using a combination of graphene contacts and drop‐casted MoS2nanoflakes, exhibiting similar sensitivity limits. Finally, a thermal annealing strategy is used to explore the tunability of the nanoflake interactions and subsequent circuit model fit, with a demonstrated sensitivity improvement of 2× with thermal annealing at 200 °C.

     
    more » « less