skip to main content


Search for: All records

Creators/Authors contains: "Mueller, Karl"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Hierarchical nucleation pathways are ubiquitous in the synthesis of minerals and materials. In the case of zeolites and metal–organic frameworks, pre‐organized multi‐ion “secondary building units” (SBUs) have been proposed as fundamental building blocks. However, detailing the progress of multi‐step reaction mechanisms from monomeric species to stable crystals and defining the structures of the SBUs remains an unmet challenge. Combining in situ nuclear magnetic resonance, small‐angle X‐ray scattering, and atomic force microscopy, we show that crystallization of the framework silicate, cyclosilicate hydrate, occurs through an assembly of cubic octameric Q 3 8 polyanions formed through cross‐linking and polymerization of smaller silicate monomers and other oligomers. These Q 3 8 are stabilized by hydrogen bonds with surrounding H 2 O and tetramethylammonium ions (TMA + ). When Q 3 8 levels reach a threshold of ≈32 % of the total silicate species, nucleation occurs. Further growth proceeds through the incorporation of [(TMA) x (Q 3 8 )⋅ n  H 2 O] ( x −8) clathrate complexes into step edges on the crystals. 
    more » « less
    Free, publicly-accessible full text available July 10, 2024
  2. Hierarchical nucleation pathways are ubiquitous in the synthesis of minerals and materials. In the case of zeolites and metal–organic frameworks, pre-organized multi-ion “secondary building units” (SBUs) have been proposed as fundamental building blocks. However, detailing the progress of multi-step reaction mechanisms from monomeric species to stable crystals and defining the structures of the SBUs remains an unmet challenge. Combining in situ nuclear magnetic resonance, small-angle X-ray scattering, and atomic force microscopy, we show that crystallization of the framework silicate, cyclosilicate hydrate, occurs through an assembly of cubic octameric Q38 polyanions formed through cross-linking and polymerization of smaller silicate monomers and other oligomers. These Q38 are stabilized by hydrogen bonds with surrounding H2O and tetramethylammonium ions (TMA+). When Q38 levels reach a threshold of ≈32 % of the total silicate species, nucleation occurs. Further growth proceeds through the incorporation of [(TMA)x(Q38)⋅n H2O](x−8) clathrate complexes into step edges on the crystals. 
    more » « less
    Free, publicly-accessible full text available May 5, 2024
  3. Abstract

    Plate motions in Southern California have undergone a transition from compressional and extensional regimes to a dominantly strike‐slip regime in the Miocene. Strike‐slip motion is most easily accommodated on vertical faults, and major transform fault strands in the region are typically mapped as near vertical on the surface. However, some previous work suggests that these faults have a dipping geometry at depth. We analyze receiver function arrivals that vary harmonically with back azimuth at all available broadband stations in the region. The results show a dominant signal from contrasts in dipping foliation as well as dipping isotropic velocity contrasts from all crustal depths, including from the ductile middle to lower crust. We interpret these receiver function observations as a dipping fault‐parallel structural fabric that is pervasive throughout the region. The strike of these structures and fabrics is parallel to that of nearby fault surface traces. We also plot microseismicity on depth profiles perpendicular to major strike‐slip faults and find consistently NE dipping features in seismicity changing from near vertical (80–85°) on the Elsinore Fault in the Peninsular Ranges to 60–65° slightly further inland on the San Jacinto Fault to 50–55° on the San Andreas Fault. Taken together, the dipping features in seismicity and in rock fabric suggest that preexisting fabrics and faults may have acted as strain guides in the modern slip regime, with reactivation and growth of strike‐slip faults along northeast dipping fabrics both above and below the brittle‐ductile transition.

     
    more » « less
  4. Abstract

    Characterizing short‐term temporal variations of fault creep provide insight into the evolution, mechanics, and strength of fault systems. Using spirit leveling and an extensometer, we measured active slip of a surface fault southwest of the Needles District, Canyonlands National Park, Utah, where exteis driven by differential unloading of a subsurface salt layer due to incision of the Colorado River. Results show continuous creep at maximum rates of 0.7 ± 0.2 mm/yr without large temporal variations typical of episodic creep events. Occasional, minor transient events in fault slip velocity coincided with water infiltration; however, we found no significant relation between precipitation and transient events. Detailed mapping of widespread, fault‐parallel sinkholes provide evidence for dilation of faults at shallow depth, a process that lowers fault strength. We propose continuous slip is related to low fault strength and differential unloading, as opposed to other salt systems where dissolution has been linked to episodic slip.

     
    more » « less