skip to main content


Search for: All records

Creators/Authors contains: "Mukamel, Shaul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The infrared response of a system of two vibrational modes in a cavity is calculated by an effective non-Hermitian Hamiltonian derived by employing the nonequilibrium Green's function (NEGF) formalism. Degeneracies of the Hamiltonian (exceptional points, EPs) widely employed in theoretical analysis of optical cavity spectroscopies are used in an approximate treatment and compared with the full NEGF. Qualitative limitations of the EP treatment are explained by examining the approximations employed in the calculation. 
    more » « less
    Free, publicly-accessible full text available April 21, 2024
  2. We present NEXMD version 2.0, the second release of the NEXMD (Nonadiabatic EXcited-state Molecular Dynamics) software package. Across a variety of new features, NEXMD v2.0 incorporates new implementations of two hybrid quantum-classical dynamics methods, namely, Ehrenfest dynamics (EHR) and the Ab-Initio Multiple Cloning sampling technique for Multiconfigurational Ehrenfest quantum dynamics (MCE-AIMC or simply AIMC), which are alternative options to the previously implemented trajectory surface hopping (TSH) method. To illustrate these methodologies, we outline a direct comparison of these three hybrid quantum-classical dynamics methods as implemented in the same NEXMD framework, discussing their weaknesses and strengths, using the modeled photodynamics of a polyphenylene ethylene dendrimer building block as a representative example. We also describe the expanded normal-mode analysis and constraints for both the ground and excited states, newly implemented in the NEXMD v2.0 framework, which allow for a deeper analysis of the main vibrational motions involved in vibronic dynamics. Overall, NEXMD v2.0 expands the range of applications of NEXMD to a larger variety of multichromophore organic molecules and photophysical processes involving quantum coherences and persistent couplings between electronic excited states and nuclear velocity. 
    more » « less
    Free, publicly-accessible full text available July 28, 2024
  3. Abstract

    Ultrafast reactions activated by light absorption are governed by multidimensional excited-state (ES) potential energy surfaces (PESs), which describe how the molecular potential varies with the nuclear coordinates. ES PESs ad-hoc displaced with respect to the ground state can drive subtle structural rearrangements, accompanying molecular biological activity and regulating physical/chemical properties. Such displacements are encoded in the Franck-Condon overlap integrals, which in turn determine the resonant Raman response. Conventional spectroscopic approaches only access their absolute value, and hence cannot determine the sense of ES displacements. Here, we introduce a two-color broadband impulsive Raman experimental scheme, to directly measure complex Raman excitation profiles along desired normal modes. The key to achieve this task is in the signal linear dependence on the Frank-Condon overlaps, brought about by non-degenerate resonant probe and off-resonant pump pulses, which ultimately enables time-domain sensitivity to the phase of the stimulated vibrational coherences. Our results provide the tool to determine the magnitude and the sensed direction of ES displacements, unambiguously relating them to the ground state eigenvectors reference frame.

     
    more » « less
  4. Abstract We present a novel approach to transient Raman spectroscopy, which combines stochastic probe pulses and a covariance-based detection to measure stimulated Raman signals in alpha-quartz. A coherent broadband pump is used to simultaneously impulsively excite a range of different phonon modes, and the phase, amplitude, and energy of each mode are independently recovered as a function of the pump–probe delay by a noisy-probe and covariance-based analysis. Our experimental results and the associated theoretical description demonstrate the feasibility of 2D-Raman experiments based on the stochastic-probe schemes, with new capabilities not available in equivalent mean-value-based 2D-Raman techniques. This work unlocks the gate for nonlinear spectroscopies to capitalize on the information hidden within the noise and overlooked by a mean-value analysis. 
    more » « less
  5. Consolidation of ultrafast optics in electron spectroscopies based on free electron energy exchange with matter has matured significantly over the past two decades, offering an attractive toolbox for the exploration of elementary events with unprecedented spatial and temporal resolution. Here, we propose a technique for monitoring electronic and nuclear molecular dynamics that is based on self-heterodyne coherent beating of a broadband pulse rather than incoherent population transport by a narrowband pulse. This exploits the strong exchange of coherence between the free electron and the sample. An optical pulse initiates matter dynamics, which is followed by inelastic scattering of a delayed high-energy broadband single-electron beam. The interacting and noninteracting beams then interfere to produce a heterodyne-detected signal, which reveals snapshots of the sample charge density by scanning a variable delay T . The spectral interference of the electron probe introduces high-contrast phase information, which makes it possible to record the electronic coherence in the sample. Quantum dynamical simulations of the ultrafast nonradiative conical intersection passage in uracil reveal a strong electronic beating signal imprinted onto the zero-loss peak of the electronic probe in a background-free manner. 
    more » « less
  6. Time-resolved photoelectron spectroscopy (TRPES) signals that monitor the relaxation of the RNA base uracil upon optical excitation are simulated. Distinguishable signatures of coherence dynamics at conical intersections are identified, with temporal and spectral resolutions determined by the duration of the ionizing probe pulse. The frequency resolution of the technique, either directly provided by the signal or retrieved at the data-processing stage, can magnify the contribution from molecular coherences, enabling the extraction of most valuable information about the nonadiabatic molecular dynamics. The predicted coherence signatures in TRPES could be experimentally observed with existing ultrashort pulses from high-order harmonic generation or free-electron lasers. 
    more » « less
  7. By placing Mg-porphyrin molecules in a chiral optical cavity, time reversal symmetry is broken, and polariton ring currents can be generated with linearly polarized light, resulting in a circular dichroism signal. Since the electronic state degeneracy in the molecule is lifted by the formation of chiral polaritons, this signal is one order of magnitude stronger than the bare molecule signal induced by circularly polarized light. Enantiomer-selective photochemical processes in chiral optical cavities is an intriguing future possibility. 
    more » « less