skip to main content


Search for: All records

Creators/Authors contains: "Murray, A. Brad"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Although coasts are frequently seen as at the frontline of near-future environmental risk, there is more to the understanding of the future of coastal environments than a simple interaction between increasing hazards (particularly related to global sea level rise) and increasing exposure and vulnerability of coastal populations. The environment is both multi-hazard and regionally differentiated, and coastal populations, in what should be seen as a coupled social–ecological–physical system, are both affected by, and themselves modify, the impact of coastal dynamics. As the coupled dance between human decisions and coastal environmental change unfolds over the coming decades, transdisciplinary approaches will be required to come to better decisions on identifying and following sustainable coastal management pathways, including the promotion of innovative restoration activities. Inputs from indigenous knowledge systems and local communities will be particularly important as these stakeholders are crucial actors in the implementation of ecosystem-based mitigation and adaptation strategies.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    Self‐organized pattern formation is widespread and functionally significant. Scale‐dependent feedbackin space(short‐distance positive feedback coupled with long‐distance negative feedback) has been embraced as an arguably universal mechanism of ecological self‐organization. Recently, intraspecific territorial competition has been proposed as a complementary mechanism contributing to spatial self‐organization in ecology. In geomorphology, regular patterning is also widespread and has often been attributed to competition among geomorphic features. This mechanism has never been integrated into the framework of ecological pattern formation. Using the regularly patterned landscape of Big Cypress National Preserve in South Florida as a case study, we formalize a third mechanism of spatial self‐organization: competition among pattern elements of finite amplitude stabilized by scale‐dependent feedbackin time. Depressions first accelerate their expansion rate via the positive feedback between depression volume and weathering rate. Later negative feedbacks become stronger, and eventually stabilize the size of depressions. While scale‐dependent feedback in time provides a mechanism to stabilize individual depressions, it is the competition among depressions that induces spatial regularity. A relatively smaller depression could have a greater expansion rate than larger ones in its development. Higher weathering rate on the side of a divide toward the smaller depression causes migration of the divide to the larger depression. Consequently, the smaller depression expands its catchment area while the catchment area of the neighboring larger depression contracts, resulting in depressions achieving similar size and distance from each other. The diversity of regular patterns dictates the need to integrate perspectives from multiple disciplines.

     
    more » « less
  4. Abstract

    Many landforms on Earth are profoundly influenced by biota. In particular, biota play a significant role in creating karst biogeomorphology, through biogenic CO2accelerating calcite weathering. In this study, we explore the ecohydrologic feedback mechanisms that have created isolated depressional wetlands on exposed limestone bedrock in South Florida – Big Cypress National Preserve –as a case study for karst biogeomorphic processes giving rise to regularly patterned landscapes. Specifically, we are interested in: (1) whether cypress depressions on the landscape have reached (or will reach) equilibrium size; (2) if so, what feedback mechanisms stabilize the size of depressions; and (3) what distal interactions among depressions give rise to the even distribution of depressions in the landscape. We hypothesize three feedback mechanisms controlling the evolution of depressions and build a numerical model to evaluate the relative importance of each mechanism. We show that a soil cover feedback (i.e. a smaller fraction of CO2reaches the bedrock surface for weathering as soil cover thickens) is the major feedback stabilizing depressions, followed by a biomass feedback (i.e. inhibited biomass growth with deepening standing water and extended inundation period as depressions expand in volume). Strong local positive feedback between the volume of depressions and rate of volume expansion and distal negative feedback between depressions competing for water likely lead to the regular patterning at the landscape scale. The individual depressions, however, are not yet in steady state but would be in ~0.2–0.4 million years. This represents the first study to demonstrate the decoupling of landscape‐scale self‐organization and the self‐organization of its constituent agents. © 2018 John Wiley & Sons, Ltd.

     
    more » « less