skip to main content


Search for: All records

Creators/Authors contains: "Mustafa, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Wave-like dark matter made of spin-1 particles (dark photons) is expected to form ground state clumps called “vector solitons”, which can have different polarizations. In this work, we consider the interaction of dark photons with photons, expressed as dimension-6 operators, and study the electromagnetic radiation that arises from an isolated vector soliton due to parametric resonant amplification of the ambient electromagnetic field. We characterize the directional dependence and polarization of the outgoing radiation, which depends on the operator as well as the polarization state of the underlying vector soliton. We discuss the implications of this radiation for the stability of solitons and as a possible channel for detecting mergers of vector solitons through astrophysical observations. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Abstract Axion-like particles (ALPs) can form a network of cosmic strings and domain walls that survives after recombination and leads to anisotropic birefringence of the cosmic microwave background (CMB). In addition to studying cosmic strings, we clarify and emphasize how the formation of ALP-field domain walls impacts the cosmic birefringence signal; these observations provide a unique way of probing ALPs with masses in the range 3 H 0 ≲ m a ≲ 3 H cmb . Using measurements of CMB birefringence from several telescopes, we find no evidence for axion-defect-induced anisotropic birefringence of the CMB. We extract constraints on the model parameters that include the ALP mass m a , ALP-photon coupling 𝒜 ∝ g aγγ f a , the domain wall number N dw , and parameters characterizing the abundance and size of defects in the string-wall network. Considering also recent evidence for isotropic CMB birefringence, we find it difficult to accommodate this with the non-detection of anisotropic birefringence under the assumption that the signal is generated by an ALP defect network. 
    more » « less
  3. ABSTRACT

    We investigate cosmological structure formation in fuzzy dark matter (FDM) with the attractive self-interaction (SI) with numerical simulations. Such a SI would arise if the FDM boson were an ultra-light axion, which has a strong CP symmetry-breaking scale (decay constant). Although weak, the attractive SI may be strong enough to counteract the quantum ‘pressure’ and alter structure formation. We find in our simulations that the SI can enhance small-scale structure formation, and soliton cores above a critical mass undergo a phase transition, transforming from dilute to dense solitons.

     
    more » « less
  4. null (Ed.)
    Dear Editor-in-Chief: We have given two articles published recently in Science of the Total Environment by Mandal and Pal (2020) and Zambrano-Monserrate et al. (2020) a thorough reading. Both articles present a significant association between the novel Coronavirus (COVID-19) social distancing policies and improvement in environmental quality such as air pollution, land surface temperature, and noise. Both articles present good research, complemented by detailed explanations and displays, yet we have a few concerns that affect the interpretation and meaning of the results. 
    more » « less
  5. This paper presents a resilient control framework for distributed frequency and voltage control of AC microgrids under data manipulation attacks. In order for each distributed energy resource (DER) to detect any misbehavior on its neighboring DERs, an attack detection mechanism is first presented using a Kullback-Liebler (KL) divergence-based criterion. An attack mitigation technique is then proposed that utilizes the calculated KL divergence factors to determine trust values indicating the trustworthiness of the received information. Moreover, DERs continuously generate a self-belief factor and communicate it with their neighbors to inform them of the validity level of their own outgoing information. DERs incorporate their neighbors' self-belief and their own trust values in their control protocols to slow down and mitigate attacks. It is shown that the proposed cyber-secure control effectively distinguishes data manipulation attacks from legitimate events. The performance of proposed secure frequency and voltage control techniques is verified through the simulation of microgrid tests system implemented on IEEE 34-bus test feeder with six DERs. 
    more » « less
  6. ABSTRACT Bose–Einstein condensate dark matter (BECDM, also known as fuzzy dark matter) is motivated by fundamental physics and has recently received significant attention as a serious alternative to the established cold dark matter (CDM) model. We perform cosmological simulations of BECDM gravitationally coupled to baryons and investigate structure formation at high redshifts (z ≳ 5) for a boson mass m = 2.5 × 10−22 eV, exploring the dynamical effects of its wavelike nature on the cosmic web and the formation of first galaxies. Our BECDM simulations are directly compared to CDM as well as to simulations where the dynamical quantum potential is ignored and only the initial suppression of the power spectrum is considered – a warm dark matter-like (‘WDM’) model often used as a proxy for BECDM. Our simulations confirm that ‘WDM’ is a good approximation to BECDM on large cosmological scales even in the presence of the baryonic feedback. Similarities also exist on small scales, with primordial star formation happening both in isolated haloes and continuously along cosmic filaments; the latter effect is not present in CDM. Global star formation and metal enrichment in these first galaxies are delayed in BECDM/‘WDM’ compared to the CDM case: in BECDM/‘WDM’ first stars form at z ∼ 13/13.5, while in CDM star formation starts at z ∼ 35. The signature of BECDM interference, not present in ‘WDM’, is seen in the evolved dark matter power spectrum: although the small-scale structure is initially suppressed, power on kpc scales is added at lower redshifts. Our simulations lay the groundwork for realistic simulations of galaxy formation in BECDM. 
    more » « less