skip to main content


Search for: All records

Creators/Authors contains: "N'Diaye, Alpha T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Few-layered HfS3nanoribbons exhibit n-type conductivity and a large photoresponse to visible light. The photocurrent strongly depends on the polarization direction of the excitation laser due to the highly anisotropic quasi-1D crystal structure of HfS3.

     
    more » « less
    Free, publicly-accessible full text available July 20, 2024
  3. A chiral 3D coordination compound, [Gd 2 (L) 2 (ox) 2 (H 2 O) 2 ], arranged around a dinuclear Gd unit has been characterized by X-ray photoemission and X-ray absorption measurements in the context of density functional theory studies. Core level photoemission of the Gd 5p multiplet splittings indicates that spin orbit coupling dominates over j–J coupling evident in the 5p core level spectra of Gd metal. Indications of spin–orbit coupling are consistent with the absence of inversion symmetry due to the ligand field. Density functional theory predicts antiferromagnet alignment of the Gd 2 dimers and a band gap of the compound consistent with optical absorption. 
    more » « less
  4. Magnetic properties and interfacial phenomena of epitaxial perovskite oxides depend sensitively on parameters such as film thickness and strain state. In this work, epitaxial La 0.67 Sr 0.33 CoO 3 (LSCO)/La 0.67 Sr 0.33 MnO 3 (LSMO) bilayers were grown on NdGaO 3 (NGO) and LaAlO 3 (LAO) substrates with a fixed LSMO thickness of 6 nm, and LSCO thickness (t LSCO ) varying from 2 to 10 nm. Soft x-ray magnetic spectroscopy revealed that magnetically active Co 2+ ions that strongly coupled to the LSMO layer were observed below a critical t LSCO for bilayers grown on both substrates. On LAO substrates, this critical thickness was 2 nm, above which the formation of Co 2+ ions was quickly suppressed leaving only a soft LSCO layer with mixed valence Co 3+ /Co 4+ ions. The magnetic properties of both LSCO and LSMO layers displayed strong t LSCO dependence. This critical t LSCO increased to 4 nm on NGO substrates, and the magnetic properties of only the LSCO layer displayed t LSCO dependence. A non-magnetic layer characterized by Co 3+ ions and with a thickness below 2 nm exists at the LSCO/substrate interface for both substrates. The results contribute to the understanding of interfacial exchange spring behavior needed for applications in next generation spintronic and magnetic memory devices. 
    more » « less
  5. Future molecular microelectronics require the electronic conductivity of the device to be tunable without impairing the voltage control of the molecular electronic properties. This work reports the influence of an interface between a semiconducting polyaniline polymer or a polar poly-D-lysine molecular film and one of two valence tautomeric complexes, i.e. , [Co III (SQ)(Cat)(4-CN-py) 2 ] ↔ [Co II (SQ) 2 (4-CN-py) 2 ] and [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ]. The electronic transitions and orbitals are identified using X-ray photoemission, X-ray absorption, inverse photoemission, and optical absorption spectroscopy measurements that are guided by density functional theory. Except for slightly modified binding energies and shifted orbital levels, the choice of the underlying substrate layer has little effect on the electronic structure. A prominent unoccupied ligand-to-metal charge transfer state exists in [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ] that is virtually insensitive to the interface between the polymer and tautomeric complexes in the Co II high-spin state. 
    more » « less