skip to main content


Search for: All records

Creators/Authors contains: "Nagai, Daisuke"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    A narrow linear object extending ∼60 kpc from the centre of a galaxy at redshift z ∼ 1 has recently been discovered and interpreted as shocked gas filament forming stars. The host galaxy presents an irregular morphology, implying recent merger events. Supposing that each of the progenitor galaxies has a central supermassive black hole (SMBH) and the SMBHs are accumulated at the centre of the merger remnant, a fraction of them can be ejected from the galaxy with a high velocity due to interactions between SMBHs. When such a runaway SMBH (RSMBH) passes through the circumgalactic medium (CGM), converging flows are induced along the RSMBH path, and star formation could eventually be ignited. We show that the CGM temperature prior to the RSMBH perturbation should be below the peak temperature in the cooling function to trigger filament formation. While the gas is temporarily heated due to compression, the cooling efficiency increases, and gas accumulation becomes allowed along the path. When the CGM density is sufficiently high, the gas can cool down and develop a dense filament by z = 1. The mass and velocity of the RSMBH determine the scale of filament formation. Hydrodynamical simulations validate the analytical expectations. Therefore, we conclude that the perturbation by RSMBHs is a viable channel to form the observed linear object. Using the analytical model validated by simulations, we show that the CGM around the linear object to be warm ($T \lesssim 2 \times 10^5$ K) and dense ($n \gtrsim 2 \times 10^{-5} (T/2 \times 10^5 \, K)^{-1} \, {\rm cm^{-3}}$).

     
    more » « less
  2. ABSTRACT

    The circum-galactic medium (CGM) can feasibly be mapped by multiwavelength surveys covering broad swaths of the sky. With multiple large data sets becoming available in the near future, we develop a likelihood-free Deep Learning technique using convolutional neural networks (CNNs) to infer broad-scale physical properties of a galaxy’s CGM and its halo mass for the first time. Using CAMELS (Cosmology and Astrophysics with MachinE Learning Simulations) data, including IllustrisTNG, SIMBA, and Astrid models, we train CNNs on Soft X-ray and 21-cm (H i) radio two-dimensional maps to trace hot and cool gas, respectively, around galaxies, groups, and clusters. Our CNNs offer the unique ability to train and test on ‘multifield’ data sets comprised of both H i and X-ray maps, providing complementary information about physical CGM properties and improved inferences. Applying eRASS:4 survey limits shows that X-ray is not powerful enough to infer individual haloes with masses log (Mhalo/M⊙) < 12.5. The multifield improves the inference for all halo masses. Generally, the CNN trained and tested on Astrid (SIMBA) can most (least) accurately infer CGM properties. Cross-simulation analysis – training on one galaxy formation model and testing on another – highlights the challenges of developing CNNs trained on a single model to marginalize over astrophysical uncertainties and perform robust inferences on real data. The next crucial step in improving the resulting inferences on the physical properties of CGM depends on our ability to interpret these deep-learning models.

     
    more » « less
  3. ABSTRACT

    We quantify the cosmological spread of baryons relative to their initial neighbouring dark matter distribution using thousands of state-of-the-art simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (CAMELS) project. We show that dark matter particles spread relative to their initial neighbouring distribution owing to chaotic gravitational dynamics on spatial scales comparable to their host dark matter halo. In contrast, gas in hydrodynamic simulations spreads much further from the initial neighbouring dark matter owing to feedback from supernovae (SNe) and active galactic nuclei (AGN). We show that large-scale baryon spread is very sensitive to model implementation details, with the fiducial simba model spreading ∼40 per cent of baryons >1 Mpc away compared to ∼10 per cent for the IllustrisTNG and astrid models. Increasing the efficiency of AGN-driven outflows greatly increases baryon spread while increasing the strength of SNe-driven winds can decrease spreading due to non-linear coupling of stellar and AGN feedback. We compare total matter power spectra between hydrodynamic and paired N-body simulations and demonstrate that the baryonic spread metric broadly captures the global impact of feedback on matter clustering over variations of cosmological and astrophysical parameters, initial conditions, and (to a lesser extent) galaxy formation models. Using symbolic regression, we find a function that reproduces the suppression of power by feedback as a function of wave number (k) and baryonic spread up to $k \sim 10\, h$ Mpc−1 in SIMBA while highlighting the challenge of developing models robust to variations in galaxy formation physics implementation.

     
    more » « less
  4. ABSTRACT

    We introduce a new model of the evolution of the concentration of dark matter haloes, c(t). For individual haloes, our model approximates c(t) as a power law with a time-dependent index, such that at early times, concentration has a nearly constant value of c ≈ 3–4, and as cosmic time progresses, c(t) smoothly increases. Using large samples of halo merger trees taken from the Bolshoi–Planck and MultiDark Planck 2 cosmological simulations, we demonstrate that our three-parameter model can approximate the evolution of the concentration of individual haloes with a typical accuracy of 0.1 dex for $t\gtrsim 2\, {\rm Gyr}$ for all Bolshoi–Planck and MultiDark Planck 2 haloes of present-day peak mass $M_{0}\gtrsim 10^{11.5}\, {\rm M}_{\odot }$. We additionally present a new model of the evolution of the concentration of halo populations, which we show faithfully reproduces both average concentration growth and the diversity of smooth trajectories of c(t), including capturing correlations with halo mass and halo assembly history. Our publicly available source code, diffprof, can be used to generate Monte Carlo realizations of the concentration histories of cosmologically representative halo populations. diffprof is differentiable due to its implementation in the jax autodiff library, which facilitates the incorporation of our model into existing analytical halo model frameworks.

     
    more » « less
  5. ABSTRACT

    We analyse the internal structure and dynamics of cosmic-web filaments connecting massive high-z haloes. Our analysis is based on a high-resolution arepo cosmological simulation zooming-in on three Mpc-scale filaments feeding three massive haloes of $\sim 10^{12}\, \text{M}_\odot$ at z ∼ 4, embedded in a large-scale sheet. Each filament is surrounded by a cylindrical accretion shock of radius $r_{\rm shock} \sim 50 \, {\rm kpc}$. The post-shock gas is in virial equilibrium within the potential well set by an isothermal dark-matter filament. The filament line-mass is $\sim 9\times 10^8\, \text{M}_\odot \, {\rm kpc}^{-1}$, the gas fraction within rshock is the universal baryon fraction, and the virial temperature is ∼7 × 105 K. These all match expectations from analytical models for filament properties as a function of halo mass and redshift. The filament cross-section has three radial zones. In the outer ‘thermal’ (T) zone, $r \ge 0.65 \, r_{\rm shock}$, inward gravity, and ram-pressure forces are overbalanced by outward thermal pressure forces, decelerating the inflowing gas and expanding the shock outwards. In the intermediate ‘vortex’ (V) zone, 0.25 ≤ r/rshock ≤ 0.65, the velocity field is dominated by a quadrupolar vortex structure due to offset inflow along the sheet through the post-shock gas. The outward force is dominated by centrifugal forces associated with these vortices, with additional contributions from global rotation and thermal pressure. Shear and turbulent forces associated with the vortices act inwards. The inner ‘stream’ (S) zone, $r \lt 0.25 \, r_{\rm shock}$, is a dense isothermal core, $T\sim 3 \times 10^4 \, {\rm K}$ and $n_{\rm H}\sim 0.01 \, {\rm cm^{-3}}$, defining the cold streams that feed galaxies. The core is formed by an isobaric cooling flow and is associated with a decrease in outward forces, though exhibiting both inflows and outflows.

     
    more » « less
  6. ABSTRACT

    We evaluate the effectiveness of deep learning (DL) models for reconstructing the masses of galaxy clusters using X-ray photometry data from next-generation surveys. We establish these constraints using a catalogue of realistic mock eROSITA X-ray observations which use hydrodynamical simulations to model realistic cluster morphology, background emission, telescope response, and active galactic nucleus (AGN) sources. Using bolometric X-ray photon maps as input, DL models achieve a predictive mass scatter of $\sigma _{\ln M_\mathrm{500c}} = 17.8~{{\ \rm per\ cent}}$, a factor of two improvements on scalar observables such as richness Ngal, 1D velocity dispersion σv,1D, and photon count Nphot as well as a 32  per cent improvement upon idealized, volume-integrated measurements of the bolometric X-ray luminosity LX. We then show that extending this model to handle multichannel X-ray photon maps, separated in low, medium, and high energy bands, further reduces the mass scatter to 16.2  per cent. We also tested a multimodal DL model incorporating both dynamical and X-ray cluster probes and achieved marginal gains at a mass scatter of 15.9  per cent. Finally, we conduct a quantitative interpretability study of our DL models and find that they greatly down-weight the importance of pixels in the centres of clusters and at the location of AGN sources, validating previous claims of DL modelling improvements and suggesting practical and theoretical benefits for using DL in X-ray mass inference.

     
    more » « less
  7. ABSTRACT

    We present a per cent-level accurate model of the line-of-sight velocity distribution of galaxies around dark matter haloes as a function of projected radius and halo mass. The model is developed and tested using synthetic galaxy catalogues generated with the UniverseMachine run on the Multi-Dark Planck 2 N-body simulations. The model decomposes the galaxies around a cluster into three kinematically distinct classes: orbiting, infalling, and interloping galaxies. We demonstrate that: (1) we can statistically distinguish between these three types of galaxies using only projected line-of-sight velocity information; (2) the halo edge radius inferred from the line-of-sight velocity dispersion is an excellent proxy for the three-dimensional halo edge radius; and (3) we can accurately recover the full velocity dispersion profile for each of the three populations of galaxies. Importantly, the velocity dispersion profiles of the orbiting and infalling galaxies contain five independent parameters – three distinct radial scales and two velocity dispersion amplitudes – each of which is correlated with mass. Thus, the velocity dispersion profile of galaxy clusters has inherent redundancies that allow us to perform non-trivial systematics checks from a single data set. We discuss several potential applications of our new model for detecting the edge radius and constraining cosmology and astrophysics using upcoming spectroscopic surveys.

     
    more » « less
  8. ABSTRACT

    Dark matter haloes have long been recognized as one of the fundamental building blocks of large-scale structure formation models. Despite their importance – or perhaps because of it! – halo definitions continue to evolve towards more physically motivated criteria. Here, we propose a new definition that is physically motivated, effectively unique, and parameter-free: ‘A dark matter halo is comprised of the collection of particles orbiting in their own self-generated potential’. This definition is enabled by the fact that, even with as few as ≈300 particles per halo, nearly every particle in the vicinity of a halo can be uniquely classified as either orbiting or infalling based on its dynamical history. For brevity, we refer to haloes selected in this way as physical haloes. We demonstrate that (1) the mass function of physical haloes is Press–Schechter, provided the critical threshold for collapse is allowed to vary slowly with peak height; and (2) the peak-background split prediction of the clustering amplitude of physical haloes is statistically consistent with the simulation data, with accuracy no worse than ≈5 per cent.

     
    more » « less
  9. ABSTRACT

    Feedback from active galactic nuclei (AGNs) and supernovae can affect measurements of integrated Sunyaev–Zeldovich (SZ) flux of haloes (YSZ) from cosmic microwave background (CMB) surveys, and cause its relation with the halo mass (YSZ–M) to deviate from the self-similar power-law prediction of the virial theorem. We perform a comprehensive study of such deviations using CAMELS, a suite of hydrodynamic simulations with extensive variations in feedback prescriptions. We use a combination of two machine learning tools (random forest and symbolic regression) to search for analogues of the Y–M relation which are more robust to feedback processes for low masses ($M\lesssim 10^{14}\, \mathrm{ h}^{-1} \, \mathrm{ M}_\odot$); we find that simply replacing Y → Y(1 + M*/Mgas) in the relation makes it remarkably self-similar. This could serve as a robust multiwavelength mass proxy for low-mass clusters and galaxy groups. Our methodology can also be generally useful to improve the domain of validity of other astrophysical scaling relations. We also forecast that measurements of the Y–M relation could provide per cent level constraints on certain combinations of feedback parameters and/or rule out a major part of the parameter space of supernova and AGN feedback models used in current state-of-the-art hydrodynamic simulations. Our results can be useful for using upcoming SZ surveys (e.g. SO, CMB-S4) and galaxy surveys (e.g. DESI and Rubin) to constrain the nature of baryonic feedback. Finally, we find that the alternative relation, Y–M*, provides complementary information on feedback than Y–M.

     
    more » « less
  10. Abstract

    We investigate how cosmic web structures affect galaxy quenching in the IllustrisTNG (TNG100) cosmological simulations by reconstructing the cosmic web within each snapshot using the DisPerSE framework. We measure the comoving distance from each galaxy with stellar masslog(M*/M)8to the nearest node (dnode) and the nearest filament spine (dfil) to study the dependence of both the median specific star formation rate (〈sSFR〉) and the median gas fraction (〈fgas〉) on these distances. We find that the 〈sSFR〉 of galaxies is only dependent on the cosmic web environment atz< 2, with the dependence increasing with time. Atz≤ 0.5,8log(M*/M)<9galaxies are quenched atdnode≲ 1 Mpc, and have significantly suppressed star formation atdfil≲ 1 Mpc, trends driven mostly by satellite galaxies. Atz≤ 1, in contrast to the monotonic drop in 〈sSFR〉 oflog(M*/M)<10galaxies with decreasingdnodeanddfil,log(M*/M)10galaxies—both centrals and satellites—experience an upturn in 〈sSFR〉 atdnode≲ 0.2 Mpc. Much of this cosmic web dependence of star formation activity can be explained by an evolution in 〈fgas〉. Our results suggest that in the past ∼10 Gyr, low-mass satellites are quenched by rapid gas stripping in dense environments near nodes and gradual gas starvation in intermediate-density environments near filaments. At earlier times, cosmic web structures efficiently channeled cold gas into most galaxies. State-of-the-art ongoing spectroscopic surveys such as the Sloan Digital Sky Survey and DESI, as well as those planned with the Subaru Prime Focus Spectrograph, JWST, and Roman, are required to test our predictions against observations.

     
    more » « less