skip to main content


Search for: All records

Creators/Authors contains: "Nagataki, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We investigate the impacts of the neutrino cooling mechanism inside the neutron star (NS) core on the light curves of type I X-ray bursts and X-ray superbursts. From several observations of NS thermal evolution, physical processes of fast neutrino cooling, such as the direct Urca (DU) process, are indicated. They significantly decrease the surface temperature of NSs, though the cooling effect could be suppressed by nucleon superfluidity. In the present study, focusing on the DU process and nucleon superfluidity, we investigate the effects of NS cooling on the X-ray bursts using a general-relativistic stellar-evolution code. We find that the DU process leads to a longer recurrence time and higher peak luminosity, which could be obstructed by the neutrons’ superfluidity. We also apply our burst models to the comparison with Clocked burster GS 1826−24, and to the recurrence time of a superburst triggered by carbon ignition. These effects are significant within a certain range of binary parameters and the uncertainty of the NS equation of state. 
    more » « less
  2. ABSTRACT Gamma-ray bursts (GRBs), can be employed as standardized candles, extending the distance ladder beyond Type Ia supernovae (SNe Ia, z = 2.26). We standardize GRBs using the three-dimensional (3D) Fundamental Plane relation (the Dainotti relation) among the rest-frame end time of the X-ray plateau emission, its corresponding luminosity, and the peak prompt luminosity. Combining SNe Ia and GRBs, we constrain ΩM = 0.299 ± 0.009 assuming a flat Λ cold dark matter (ΛCDM) cosmology with and without correcting GRBs for selection biases and redshift evolution. Using a 3D optical Dainotti correlation, we find this sample is as efficacious in the determination of ΩM as the X-ray sample. We trimmed our GRB samples to achieve tighter planes to simulate additional GRBs. We determined how many GRBs are needed as stand-alone probes to achieve a comparable precision on ΩM to the one obtained by SNe Ia only. We reach the same error measurements derived using SNe Ia in 2011 and 2014 with 142 and 284 simulated optical GRBs, respectively, considering the error bars on the variables halved. These error limits will be reached in 2038 and in 2047, respectively. Using a doubled sample (obtained by future machine learning approaches allowing a light-curve reconstruction and the estimates of GRB redshifts when z is unknown) compared to the current sample, with error bars halved we will reach the same precision as SNe Ia in 2011 and 2014, now and in 2026, respectively. If we consider the current SNe precision, this will be reached with 390 optical GRBs by 2054. 
    more » « less
  3. Free, publicly-accessible full text available September 1, 2024
  4. Free, publicly-accessible full text available August 1, 2024
  5. ABSTRACT A deep survey of the Large Magellanic Cloud at ∼0.1–100 TeV photon energies with the Cherenkov Telescope Array is planned. We assess the detection prospects based on a model for the emission of the galaxy, comprising the four known TeV emitters, mock populations of sources, and interstellar emission on galactic scales. We also assess the detectability of 30 Doradus and SN 1987A, and the constraints that can be derived on the nature of dark matter. The survey will allow for fine spectral studies of N 157B, N 132D, LMC P3, and 30 Doradus C, and half a dozen other sources should be revealed, mainly pulsar-powered objects. The remnant from SN 1987A could be detected if it produces cosmic-ray nuclei with a flat power-law spectrum at high energies, or with a steeper index 2.3–2.4 pending a flux increase by a factor of >3–4 over ∼2015–2035. Large-scale interstellar emission remains mostly out of reach of the survey if its >10 GeV spectrum has a soft photon index ∼2.7, but degree-scale 0.1–10 TeV pion-decay emission could be detected if the cosmic-ray spectrum hardens above >100 GeV. The 30 Doradus star-forming region is detectable if acceleration efficiency is on the order of 1−10 per cent of the mechanical luminosity and diffusion is suppressed by two orders of magnitude within <100 pc. Finally, the survey could probe the canonical velocity-averaged cross-section for self-annihilation of weakly interacting massive particles for cuspy Navarro–Frenk–White profiles. 
    more » « less
    Free, publicly-accessible full text available June 22, 2024
  6. Abstract

    In this paper, we present the first high‐speed video observation of a cloud‐to‐ground lightning flash and its associated downward‐directed Terrestrial Gamma‐ray Flash (TGF). The optical emission of the event was observed by a high‐speed video camera running at 40,000 frames per second in conjunction with the Telescope Array Surface Detector, Lightning Mapping Array, interferometer, electric‐field fast antenna, and the National Lightning Detection Network. The cloud‐to‐ground flash associated with the observed TGF was formed by a fast downward leader followed by a very intense return stroke peak current of −154 kA. The TGF occurred while the downward leader was below cloud base, and even when it was halfway in its propagation to ground. The suite of gamma‐ray and lightning instruments, timing resolution, and source proximity offer us detailed information and therefore a unique look at the TGF phenomena.

     
    more » « less