skip to main content


Search for: All records

Creators/Authors contains: "Neate, Peter G. N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The high abundance, low toxicity and rich redox chemistry of iron has resulted in a surge of iron‐catalyzed organic transformations over the last two decades. Within this area, N‐heterocyclic carbene (NHC) ligands have been widely utilized to achieve high yields across reactions including cross‐coupling and C−H alkylation, amongst others. Central to the development of iron‐NHC catalytic methods is the understanding of iron speciation and the propensity of these species to undergo reduction events, as low‐valent iron species can be advantageous or undesirable from one system to the next. This study highlights the importance of the identity of the NHC on iron speciation upon reaction with EtMgBr, where reactions with SIMes and IMes NHCs were shown to undergo β‐hydride elimination more readily than those with SIPr and IPr NHCs. This insight is vital to developing new iron‐NHC catalyzed transformations as understanding how to control this reduction by simply changing the NHC is central to improving the reactivity in iron‐NHC catalysis.

     
    more » « less
  2. Abstract

    N,N,N′,N′‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross‐coupling, C−H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular‐level insight into the role of TMEDA in achieving effective catalysis. The key is the initial formation of TMEDA–iron(II)–alkyl species which undergo a controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)–alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis.

     
    more » « less
  3. Abstract

    N,N,N′,N′‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross‐coupling, C−H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular‐level insight into the role of TMEDA in achieving effective catalysis. The key is the initial formation of TMEDA–iron(II)–alkyl species which undergo a controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)–alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis.

     
    more » « less