skip to main content


Search for: All records

Creators/Authors contains: "Nelson, Kristen C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Despite the social and ecological importance of residential spaces across the country, scant research examines urban yard management policies in the U.S. Governance scholarship points to the implementation challenges of navigating policy language. Our research provides an exploration of yard ordinance language, with implications for communities across the U.S. Specifically, we sought to determine whether—and in what instances—vegetation- and groundcover-related yard ordinances in the U.S. are ambiguous or clear. Our findings suggest that ordinances are often ambiguous when referring to the state or quality of the constituent parts that make up the residential yard (e.g., “neat” or “orderly”). Yet they are clear when providing guidance about what plant species are or are not allowed, or when articulating specific requirements regarding the size or dimensions of impervious surfaces and plants. We discuss the policy implications of these findings, especially in the context of how such policies may invite the subjective judgment by enforcers, leaving open the potential for discriminatory enforcement, especially with regard to marginalized communities where different cultural values and esthetics may be expressed in yards. 
    more » « less
  2. null (Ed.)
  3. Urbanization has a homogenizing effect on biodiversity and leads to communities with fewer native species and lower conservation value. However, few studies have explored whether or how land management by urban residents can ameliorate the deleterious effects of this homogenization on species composition. We tested the effects of local (land management) and neighborhood-scale (impervious surface and tree canopy cover) features on breeding bird diversity in six US metropolitan areas that differ in regional species pools and climate. We used a Bayesian multiregion community model to assess differences in species richness, functional guild richness, community turnover, population vulnerability, and public interest in each bird community in six land management types: two natural area park types (separate and adjacent to residential areas), two yard types with conservation features (wildlife-certified and water conservation) and two lawn-dominated yard types (high- and low-fertilizer application), and surrounding neighborhood-scale features. Species richness was higher in yards compared with parks; however, parks supported communities with high conservation scores while yards supported species of high public interest. Bird communities in all land management types were composed of primarily native species. Within yard types, species richness was strongly and positively associated with neighborhood-scale tree canopy cover and negatively associated with impervious surface. At a continental scale, community turnover between cities was lowest in yards and highest in parks. Within cities, however, turnover was lowest in high-fertilizer yards and highest in wildlife-certified yards and parks. Our results demonstrate that, across regions, preserving natural areas, minimizing impervious surfaces and increasing tree canopy are essential strategies to conserve regionally important species. However, yards, especially those managed for wildlife support diverse, heterogeneous bird communities with high public interest and potential to support species of conservation concern. Management approaches that include the preservation of protected parks, encourage wildlife-friendly yards and acknowledge how public interest in local birds can advance successful conservation in American residential landscapes. 
    more » « less
  4. null (Ed.)
  5. Abstract

    The conversion of native ecosystems to residential ecosystems dominated by lawns has been a prevailing land‐use change in the United States over the past 70 years. Similar development patterns and management of residential ecosystems cause many characteristics of residential ecosystems to be more similar to each other across broad continental gradients than that of former native ecosystems. For instance, similar lawn management by irrigation and fertilizer applications has the potential to influence soil carbon (C) and nitrogen (N) pools and processes. We evaluated the mean and variability of total soil C and N stocks, potential net N mineralization and nitrification, soil nitrite (NO2)/nitrate (NO3) and ammonium (NH4+) pools, microbial biomass C and N content, microbial respiration, bulk density, soil pH, and moisture content in residential lawns and native ecosystems in six metropolitan areas across a broad climatic gradient in the United States: Baltimore, MD (BAL); Boston, MA (BOS); Los Angeles, CA (LAX); Miami, FL (MIA); Minneapolis–St. Paul, MN (MSP); and Phoenix, AZ (PHX). We observed evidence of higher N cycling in lawn soils, including significant increases in soil NO2/NO3, microbial N pools, and potential net nitrification, and significant decreases in NH4+pools. Self‐reported yard fertilizer application in the previous year was linked with increased NO2/ NO3content and decreases in total soil N and C content. Self‐reported irrigation in the previous year was associated with decreases in potential net mineralization and potential net nitrification and with increases in bulk density and pH. Residential topsoil had higher total soil C than native topsoil, and microbial biomass C was markedly higher in residential topsoil in the two driest cities (LAX and PHX). Coefficients of variation for most biogeochemical metrics were higher in native soils than in residential soils across all cities, suggesting that residential development homogenizes soil properties and processes at the continental scale.

     
    more » « less