skip to main content


Search for: All records

Creators/Authors contains: "Neumann, Justus"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Galactic bars can drive cold gas inflows towards the centres of galaxies. The gas transport happens primarily through the so-called bar dust lanes, which connect the galactic disc at kpc scales to the nuclear rings at hundreds of pc scales much like two gigantic galactic rivers. Once in the ring, the gas can fuel star formation activity, galactic outflows, and central supermassive black holes. Measuring the mass inflow rates is therefore important to understanding the mass/energy budget and evolution of galactic nuclei. In this work, we use CO datacubes from the PHANGS-ALMA survey and a simple geometrical method to measure the bar-driven mass inflow rate on to the nuclear ring of the barred galaxy NGC 1097. The method assumes that the gas velocity in the bar lanes is parallel to the lanes in the frame co-rotating with the bar, and allows one to derive the inflow rates from sufficiently sensitive and resolved position–position–velocity diagrams if the bar pattern speed and galaxy orientations are known. We find an inflow rate of $\dot{M}=(3.0 \pm 2.1)\, \rm M_\odot \, yr^{-1}$ averaged over a time span of 40 Myr, which varies by a factor of a few over time-scales of ∼10 Myr. Most of the inflow appears to be consumed by star formation in the ring, which is currently occurring at a star formation rate (SFR) of $\simeq\!1.8\!-\!2 \, \rm M_\odot \, yr^{-1}$, suggesting that the inflow is causally controlling the SFR in the ring as a function of time.

     
    more » « less
  2. Abstract We compare mid-infrared (mid-IR), extinction-corrected H α , and CO (2–1) emission at 70–160 pc resolution in the first four PHANGS–JWST targets. We report correlation strengths, intensity ratios, and power-law fits relating emission in JWST’s F770W, F1000W, F1130W, and F2100W bands to CO and H α . At these scales, CO and H α each correlate strongly with mid-IR emission, and these correlations are each stronger than the one relating CO to H α emission. This reflects that mid-IR emission simultaneously acts as a dust column density tracer, leading to a good match with the molecular-gas-tracing CO, and as a heating tracer, leading to a good match with the H α . By combining mid-IR, CO, and H α at scales where the overall correlation between cold gas and star formation begins to break down, we are able to separate these two effects. We model the mid-IR above I ν = 0.5 MJy sr −1 at F770W, a cut designed to select regions where the molecular gas dominates the interstellar medium (ISM) mass. This bright emission can be described to first order by a model that combines a CO-tracing component and an H α -tracing component. The best-fitting models imply that ∼50% of the mid-IR flux arises from molecular gas heated by the diffuse interstellar radiation field, with the remaining ∼50% associated with bright, dusty star-forming regions. We discuss differences between the F770W, F1000W, and F1130W bands and the continuum-dominated F2100W band and suggest next steps for using the mid-IR as an ISM tracer. 
    more » « less
  3. ABSTRACT Numerous studies of integrated starlight, stellar counts, and kinematics have confirmed that the Milky Way is a barred galaxy. However, far fewer studies have investigated the bar’s stellar population properties, which carry valuable independent information regarding the bar’s formation history. Here, we conduct a detailed analysis of chemical abundance distributions ([Fe/H] and [Mg/Fe]) in the on-bar and off-bar regions to study the azimuthal variation of star formation history (SFH) in the inner Galaxy. We find that the on-bar and off-bar stars at Galactocentric radii 3 kpc < rGC < 5 kpc have remarkably consistent [Fe/H] and [Mg/Fe] distribution functions and [Mg/Fe]–[Fe/H] relation, suggesting a common SFH shared by the long bar and the disc. In contrast, the bar and disc at smaller radii (2 kpc < rGC < 3 kpc) show noticeable differences, with relatively more very metal-rich ($\rm [Fe/H] \sim 0.4$) stars but fewer solar abundance stars in the bar. Given the three-phase star formation history proposed for the inner Galaxy in Lian et al., these differences could be explained by the off-bar disc having experienced either a faster early quenching process or recent metal-poor gas accretion. Vertical variations of the abundance distributions at small rGC suggest a wider vertical distribution of low-α stars in the bar, which may serve as chemical evidence for vertical heating through the bar buckling process. The lack of such vertical variations outside the bulge may then suggest a lack of vertical heating in the long bar. 
    more » « less
  4. ABSTRACT

    We calculate the fundamental stellar parameters effective temperature, surface gravity, and iron abundance – Teff, log g, [Fe/H] – for the final release of the Mapping Nearby Galaxies at APO (MaNGA) Stellar Library (MaStar), containing 59 266 per-visit-spectra for 24 290 unique stars at intermediate resolution (R ∼ 1800) and high S/N (median = 96). We fit theoretical spectra from model atmospheres by both MARCS and BOSZ-ATLAS9 to the observed MaStar spectra, using the full spectral fitting code pPXF. We further employ a Bayesian approach, using a Markov Chain Monte Carlo (MCMC) technique to map the parameter space and obtain uncertainties. Originally in this paper, we cross match MaStar observations with Gaia photometry, which enable us to set reliable priors and identify outliers according to stellar evolution. In parallel to the parameter determination, we calculate corresponding stellar population models to test the reliability of the parameters for each stellar evolutionary phase. We further assess our procedure by determining parameters for standard stars such as the Sun and Vega and by comparing our parameters with those determined in the literature from high-resolution spectroscopy (APOGEE and SEGUE) and from lower resolution matching template (LAMOST). The comparisons, considering the different methodologies and S/N of the literature surveys, are favourable in all cases. Our final parameter catalogue for MaStar cover the following ranges: 2592 ≤ Teff ≤ 32 983 K; −0.7 ≤ log g ≤ 5.4 dex; −2.9 ≤ [Fe/H] ≤ 1.0 dex and will be available with the last SDSS-IV Data Release, in 2021 December.

     
    more » « less
  5. Abstract

    Large-scale bars can fuel galaxy centers with molecular gas, often leading to the development of dense ringlike structures where intense star formation occurs, forming a very different environment compared to galactic disks. We pair ∼0.″3 (30 pc) resolution new JWST/MIRI imaging with archival ALMA CO(2–1) mapping of the central ∼5 kpc of the nearby barred spiral galaxy NGC 1365 to investigate the physical mechanisms responsible for this extreme star formation. The molecular gas morphology is resolved into two well-known bright bar lanes that surround a smooth dynamically cold gas disk (Rgal∼ 475 pc) reminiscent of non-star-forming disks in early-type galaxies and likely fed by gas inflow triggered by stellar feedback in the lanes. The lanes host a large number of JWST-identified massive young star clusters. We find some evidence for temporal star formation evolution along the ring. The complex kinematics in the gas lanes reveal strong streaming motions and may be consistent with convergence of gas streamlines expected there. Indeed, the extreme line widths are found to be the result of inter-“cloud” motion between gas peaks;ScousePydecomposition reveals multiple components with line widths of 〈σCO,scouse〉 ≈ 19 km s−1and surface densities ofΣH2,scouse800Mpc2, similar to the properties observed throughout the rest of the central molecular gas structure. Tailored hydrodynamical simulations exhibit many of the observed properties and imply that the observed structures are transient and highly time-variable. From our study of NGC 1365, we conclude that it is predominantly the high gas inflow triggered by the bar that is setting the star formation in its CMZ.

     
    more » « less
  6. Abstract This paper documents the seventeenth data release (DR17) from the Sloan Digital Sky Surveys; the fifth and final release from the fourth phase (SDSS-IV). DR17 contains the complete release of the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey, which reached its goal of surveying over 10,000 nearby galaxies. The complete release of the MaNGA Stellar Library accompanies this data, providing observations of almost 30,000 stars through the MaNGA instrument during bright time. DR17 also contains the complete release of the Apache Point Observatory Galactic Evolution Experiment 2 survey that publicly releases infrared spectra of over 650,000 stars. The main sample from the Extended Baryon Oscillation Spectroscopic Survey (eBOSS), as well as the subsurvey Time Domain Spectroscopic Survey data were fully released in DR16. New single-fiber optical spectroscopy released in DR17 is from the SPectroscipic IDentification of ERosita Survey subsurvey and the eBOSS-RM program. Along with the primary data sets, DR17 includes 25 new or updated value-added catalogs. This paper concludes the release of SDSS-IV survey data. SDSS continues into its fifth phase with observations already underway for the Milky Way Mapper, Local Volume Mapper, and Black Hole Mapper surveys. 
    more » « less