skip to main content


Search for: All records

Creators/Authors contains: "Nguyen, N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Whiteley, Marvin (Ed.)
    Climate change is a complex problem involving nonlinearities and feedback that operate across scales. No single discipline or way of thinking can effectively address the climate crisis. 
    more » « less
  3. Abstract As we approach the era of quantum advantage, when quantum computers (QCs) can outperform any classical computer on particular tasks, there remains the difficult challenge of how to validate their performance. While algorithmic success can be easily verified in some instances such as number factoring or oracular algorithms, these approaches only provide pass/fail information of executing specific tasks for a single QC. On the other hand, a comparison between different QCs preparing nominally the same arbitrary circuit provides an insight for generic validation: a quantum computation is only as valid as the agreement between the results produced on different QCs. Such an approach is also at the heart of evaluating metrological standards such as disparate atomic clocks. In this paper, we report a cross-platform QC comparison using randomized and correlated measurements that results in a wealth of information on the QC systems. We execute several quantum circuits on widely different physical QC platforms and analyze the cross-platform state fidelities. 
    more » « less
  4. Langmuir monolayers at gas/liquid interfaces provide a rich framework to investigate the interplay between multiscale geometry and mechanics. Monolayer collapse is investigated at a topological and geometric level by building a scale spaceM from experimental imaging data. We present a general lipid monolayer collapse phase diagram, which shows that wrinkling, folding, crumpling, shear banding, and vesiculation are a continuous set of mechanical states that can be approached by either tuning monolayer composition or temperature. The origin of the different mechanical states can be understood by investigating the monolayer geometry at two scales: fluorescent vs atomic force microscopy imaging. We show that an interesting switch in continuity occurs in passing between the two scales, CAFM MAFM 6¼ CFM M. Studying the difference between monolayers that fold vs shear band, we show that shear banding is correlated to the persistence of a multi-length scale microstructure within the monolayer at all surface pressures. A detailed analytical geometric formalism to describe this microstructure is developed using the theory of structured deformations. Lastly, we provide the first ever finite element simulation of lipid monolayer collapse utilizing a direct mapping from the experimental image spaceM into a simulation domain P. We show that elastic dissipation in the form of bielasticity is a necessary and sufficient condition to capture loss of in-plane stability and shear banding. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Finite-temperature phases of many-body quantum systems are fundamental to phenomena ranging from condensed-matter physics to cosmology, yet they are generally difficult to simulate. Using an ion trap quantum computer and protocols motivated by the quantum approximate optimization algorithm (QAOA), we generate nontrivial thermal quantum states of the transverse-field Ising model (TFIM) by preparing thermofield double states at a variety of temperatures. We also prepare the critical state of the TFIM at zero temperature using quantum–classical hybrid optimization. The entanglement structure of thermofield double and critical states plays a key role in the study of black holes, and our work simulates such nontrivial structures on a quantum computer. Moreover, we find that the variational quantum circuits exhibit noise thresholds above which the lowest-depth QAOA circuits provide the best results. 
    more » « less
  7. null (Ed.)
    Let $G$ be one of the two multigraphs obtained from $K_4-e$ by replacing two edges with a double-edge while maintaining a minimum degree of~2. We find necessary and sufficient conditions on $n$ and $\lambda$ for the existence of a $G$-decomposition of $^{\lambda}K_n$. 
    more » « less