skip to main content


Search for: All records

Creators/Authors contains: "Nickels, Jonathan D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Pulsed field gradient (PFG) NMR in combination with quasielastic neutron scattering (QENS) was used to investigate self-diffusion of water and acetone in Nafion membranes with and without immobilized vanillic acid (VA). Complementary characterization of these membranes was performed by small angle X-ray scattering (SAXS) and NMR relaxometry. This study was motivated by the recent data showing that an organic acid, such as VA, in Nafion can preserve its catalytic activity in the presence of water even at high intra-polymer water concentrations corresponding up to 100% ambient relative humidity. However, there is currently no clear understanding of how immobilized organic acid molecules influence the microscopic transport properties and related structural properties of Nafion. Microscopic diffusion data measured by PFG NMR and QENS are compared for Nafion with and without VA. For displacements smaller than the micrometer-sized domains previously reported for Nafion, the VA addition was not observed to lead to any significant changes in the water and/or acetone self-diffusivity measured by each technique inside Nafion. However, the reported PFG NMR data present evidence of a different influence of acetone concentration in the membranes with and without VA on the water permeance of the interfaces between neighboring micrometer-sized domains. The reported diffusion data are correlated with the results of SAXS structural characterization and NMR relaxation data for water and acetone. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    The rapid equilibrium fluctuations of water molecules are intimately connected to the rheological response; molecular motions resetting the local structure and stresses seen as flow and volume changes. In the case of water or hydrogen bonding liquids generally, the relationship is a non-trivial consideration due to strong directional interactions complicating theoretical models and necessitating clear observation of the timescale and nautre of the associated equilibrium motions. Recent work has illustrated a coincidence of timescales for short range sub-picosecond motions and the implied timescale for the shear viscosity response in liquid water. Here, neutron and light scattering methods are used to experimentally illustrate the timescale of bulk viscosity and provide a description of the associated molecular relaxation. Brillouin scattering has been used to establish the timescale of bulk viscosity; and borrowing the Maxwell approach, the ratio of the bulk viscosity, ζ , to the bulk modulus, K , yields a relaxation time, τ B , which emerges on the order of 1–2 ps in the 280 K to 303 K temperature range. Inelastic neutron scattering is subsequently used to describe the motions of water and heavy water at the molecular scale, providing both coherent and incoherent scattering data. A rotational (alternatively described as localized) motion of water protons on the 1–2 ps timescale is apparent in the incoherent scattering spectra of water, while the coherent spectra from D 2 O on the length scale of the first sharp diffraction peak, describing the microscopic density fluctuations of water, confirms the relaxation of water structure at a comparable timescale of 1–2 ps. The coincidence of these three timescales provides a mechanistic description of the bulk viscous response, with the local structure resetting due to rotational/localized motions on the order of 1–2 ps, approximately three times slower than the relaxations associated with shear viscosity. In this way we show that the shear viscous response is most closely associated with changes in water network connectivity, while the bulk viscous response is associated with local density fluctuations. 
    more » « less
  4. The scattering of neutrons can be used to provide information on the structure and dynamics of biological systems on multiple length and time scales. Pursuant to a National Science Foundation-funded workshop in February 2018, recent developments in this field are reviewed here, as well as future prospects that can be expected given recent advances in sources, instrumentation and computational power and methods. Crystallography, solution scattering, dynamics, membranes, labeling and imaging are examined. For the extraction of maximum information, the incorporation of judicious specific deuterium labeling, the integration of several types of experiment, and interpretation using high-performance computer simulation models are often found to be particularly powerful. 
    more » « less