skip to main content


Search for: All records

Creators/Authors contains: "Nilsson, Cecilia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Weather radar networks have great potential for continuous and long-term monitoring of aerial biodiversity of birds, bats, and insects. Biological data from weather radars can support ecological research, inform conservation policy development and implementation, and increase the public’s interest in natural phenomena such as migration. Weather radars are already used to study animal migration, quantify changes in populations, and reduce aerial conflicts between birds and aircraft. Yet efforts to establish a framework for the broad utilization of operational weather radar for biodiversity monitoring are at risk without suitable data policies and infrastructure in place. In Europe, communities of meteorologists and ecologists have made joint efforts toward sharing and standardizing continent-wide weather radar data. These efforts are now at risk as new meteorological data exchange policies render data useless for biodiversity monitoring. In several other parts of the world, weather radar data are not even available for ecological research. We urge policy makers, funding agencies, and meteorological organizations across the world to recognize the full potential of weather radar data. We propose several actions that would ensure the continued capability of weather radar networks worldwide to act as powerful tools for biodiversity monitoring and research. 
    more » « less
  2. Sills, Jennifer (Ed.)
  3. Applications of remote sensing data to monitor bird migration usher a new understanding of magnitude and extent of movements across entire flyways. Millions of birds move through the western USA, yet this region is understudied as a migratory corridor. Characterizing movements in the Pacific Flyway offers a unique opportunity to study complementary patterns to those recently highlighted in the Atlantic and Central Flyways. We use weather surveillance radar data from spring and autumn (1995–2018) to examine migrants' behaviours in relation to winds in the Pacific Flyway. Overall, spring migrants tended to drift on winds, but less so at northern latitudes and farther inland from the Pacific coastline. Relationships between winds and autumn flight behaviours were less striking, with no latitudinal or coastal dependencies. Differences in the preferred direction of movement (PDM) and wind direction predicted drift patterns during spring and autumn, with increased drift when wind direction and PDM differences were high. We also observed greater total flight activity through the Pacific Flyway during the spring when compared with the autumn. Such complex relationships among birds’ flight strategies, winds and seasonality highlight the variation within a migration system. Characterizations at these scales complement our understanding of strategies to clarify aerial animal movements. 
    more » « less
  4. Abstract

    Aircraft collisions with birds span the entire history of human aviation, including fatal collisions during some of the first powered human flights. Much effort has been expended to reduce such collisions, but increased knowledge about bird movements and species occurrence could dramatically improve decision support and proactive measures to reduce them. Migratory movements of birds pose a unique, often overlooked, threat to aviation that is particularly difficult for individual airports to monitor and predict the occurrence of birds vary extensively in space and time at the local scales of airport responses.

    We use two publicly available datasets, radar data from the US NEXRAD network characterizing migration movements and eBird data collected by citizen scientists to map bird movements and species composition with low human effort expenditures but high temporal and spatial resolution relative to other large‐scale bird survey methods. As a test case, we compare results from weather radar distributions and eBird species composition with detailed bird strike records from three major New York airports.

    We show that weather radar‐based estimates of migration intensity can accurately predict the probability of bird strikes, with 80% of the variation in bird strikes across the year explained by the average amount of migratory movements captured on weather radar. We also show that eBird‐based estimates of species occurrence can, using species’ body mass and flocking propensity, accurately predict when most damaging strikes occur.

    Synthesis and applications. By better understanding when and where different bird species occur, airports across the world can predict seasonal periods of collision risks with greater temporal and spatial resolution; such predictions include potential to predict when the most severe and damaging strikes may occur. Our results highlight the power of federating datasets with bird movement and distribution data for developing better and more taxonomically and ecologically tuned models of likelihood of strikes occurring and severity of strikes.

     
    more » « less
  5. Abstract

    Current climate models and observations indicate that atmospheric circulation is being affected by global climate change. To assess how these changes may affect nocturnally migrating bird populations, we need to determine how current patterns of wind assistance at migration altitudes will be enhanced or reduced under future atmospheric conditions. Here, we use information compiled from 143 weather surveillance radars stations within the contiguous United States to estimate the daily altitude, density, and direction of nocturnal migration during the spring and autumn. We intersected this information with wind projections to estimate how wind assistance is expected to change during this century at current migration altitudes. The prevailing westerlies at midlatitudes are projected to increase in strength during spring migration and decrease in strength to a lesser degree during autumn migration. Southerly winds will increase in strength across the continent during both spring and autumn migration, with the strongest gains occurring in the center of the continent. Wind assistance is projected to increase across the central (0.44 m/s; 10.1%) and eastern portions of the continent (0.32 m/s; 9.6%) during spring migration, and wind assistance is projected to decrease within the central (0.32 m/s; 19.3%) and eastern portions of the continent (0.17 m/s; 6.6%) during autumn migration. Thus, across a broad portion of the continent where migration intensity is greatest, the efficiency of nocturnal migration is projected to increase in the spring and decrease in the autumn, potentially affecting time and energy expenditures for many migratory bird species. These findings highlight the importance of placing climate change projections within a relevant ecological context informed through empirical observations, and the need to consider the possibility that climate change may generate both positive and negative implications for natural systems.

     
    more » « less